Question

a) A particle (charge = 70 μC) moves in a region where the only force on...

a)

A particle (charge = 70 μC) moves in a region where the only force on it is an electric force. As the particle moves 25 cm from point A to point B, its kinetic energy increases by 4.2 mJ. Determine the electric potential difference, VB - VA. (in Volts)

b)

Points A [at (3, 1) m] and B [at (8, 8) m] are in a region where the electric field is uniform and given by E→=(4iˆ+3jˆ)E→=4i^+3j^A- VB? (in Volts)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
[A particle with charge 6.40×10−19 C is placed on the x axis in a region where...
[A particle with charge 6.40×10−19 C is placed on the x axis in a region where the electric potential due to other charges increases in the +x direction but does not change in the y or z direction.] A. The particle, initially at rest, is acted upon only by the electric force and moves from point a to point b along the x axis, increasing its kinetic energy by 1.60×10−18 J . In what direction and through what potential difference...
A small particle has charge -4.90 μC and mass 2.10×10−4 kg . It moves from point...
A small particle has charge -4.90 μC and mass 2.10×10−4 kg . It moves from point A, where the electric potential is VA = 210 V , to point B, where the electric potential VB = 750 V is greater than the potential at point A. The electric force is the only force acting on the particle. The particle has a speed of 4.60 m/s at point A.
a) A particle with a charge of -4.0 μC and a mass of 4.9 x 10-6...
a) A particle with a charge of -4.0 μC and a mass of 4.9 x 10-6 kg is released from rest at point A and accelerates toward point B, arriving there with a speed of 83 m/s. The only force acting on the particle is the electric force. What is the potential difference VB - VA between A and B? If VB is greater than VA, then give the answer as a positive number. If VB is less than VA,...
A particle with charge 1.60×10−19 C is placed on the x axis in a region where...
A particle with charge 1.60×10−19 C is placed on the x axis in a region where the electric potential due to other charges increases in the +x direction but does not change in the y or z direction. The particle, initially at rest, is acted upon only by the electric force and moves from point a to point b along the x axis, increasing its kinetic energy by 1.44×10−18 J . In what direction and through what potential difference Vb−Va...
question: A particle with charge 8.00×10−19 C is placed on the x axis in a region...
question: A particle with charge 8.00×10−19 C is placed on the x axis in a region where the electric potential due to other charges increases in the +x direction but does not change in the y or z direction. part A: The particle, initially at rest, is acted upon only by the electric force and moves from point a to point balong the x axis, increasing its kinetic energy by 1.60×10−18 J . In what direction and through what potential...
A particle with charge 3.20×10?19 C is placed on the x axis in a region where...
A particle with charge 3.20×10?19 C is placed on the x axis in a region where the electric potential due to other charges increases in the +x direction but does not change in the y or z direction. The particle, initially at rest, is acted upon only by the electric force and moves from point a to point b along the x axis, increasing its kinetic energy by 1.12×10?18 J . In what direction and through what potential difference Vb?Va...
A 0.40 μC particle moves with a speed of 18 m/s through a region where the...
A 0.40 μC particle moves with a speed of 18 m/s through a region where the magnetic field has a strength of 0.99 T    At what angle to the field is the particle moving if the force exerted on it is 4.8×10−6N? At what angle to the field is the particle moving if the force exerted on it is 3.0×10−6N? At what angle to the field is the particle moving if the force exerted on it is 1.0×10−7N?
A particle with a charge of −1.6 μC and a mass of 3.5  10-6 kg is released...
A particle with a charge of −1.6 μC and a mass of 3.5  10-6 kg is released from rest at point A and accelerates toward point B, arriving there with a speed of 35 m/s. The only force acting on the particle is the electric force. (a) Which point is at the higher potential? point A point B ? Give your reasoning. Negative charge accelerates from a higher potential to a lower potential.Negative charge accelerates from a lower potential to a...
A 6.60 −μC particle moves through a region of space where an electric field of magnitude...
A 6.60 −μC particle moves through a region of space where an electric field of magnitude 1250 N/C points in the positive x direction, and a magnetic field of magnitude 1.01 T points in the positive z direction. 1. If the net force acting on the particle is 6.25×10^−3 N in the positive x direction, find the components of the particle's velocity. Assume the particle's velocity is in the x-y plane. vx, vy, vz =   m/s  
A 6.70 −μC particle moves through a region of space where an electric field of magnitude...
A 6.70 −μC particle moves through a region of space where an electric field of magnitude 1200 N/C points in the positive x direction, and a magnetic field of magnitude 1.25 T points in the positive z direction. If the net force acting on the particle is 6.21×10−3 N in the positive xx direction, find the components of the particle's velocity. Assume the particle's velocity is in the x-y plane. vx, vy, vz =   answer is 0,219,0 m/s why is...