Question

Two very narrow slits are spaced 1.81 μm and are placed 36.0 cm from a screen....

Two very narrow slits are spaced 1.81 μm and are placed 36.0 cm from a screen. What is the distance between the first and second dark lines of the interference pattern when the slits are illuminated with coherent light with a wavelength of 545 nm? (Hint: The angle θ in equation dsinθ=(m+12)λ is not small.)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two slits spaced 0.455 mm apart are placed 50.0 cm from a screen. What is the...
Two slits spaced 0.455 mm apart are placed 50.0 cm from a screen. What is the distance between the second and third dark lines of the interference pattern on the screen when the slits are illuminated with coherent light with a wavelength of 540 nm? mm
Two slits spaced 0.400 mm apart are placed 72.0 cm from a screen. Part A What...
Two slits spaced 0.400 mm apart are placed 72.0 cm from a screen. Part A What is the distance between the second and third dark lines of the interference pattern on the screen when the slits are illuminated with coherent light with a wavelength of 530 nm ? (delta y=_in mm)
Two slits spaced 0.130 mm apart are placed 90.0 cm from a screen and illuminated by...
Two slits spaced 0.130 mm apart are placed 90.0 cm from a screen and illuminated by coherent light with wavelength 550 nm. The intensity at the center of the central maximum is 4.30 × 10-6 W/m2. What is the distance on the screen between the third bright fringe and the sixth dark fringe? What is the intensity at a point midway between the center of the central maximum and the first minimum?
A double-slit interference pattern is created by two narrow slits spaced 0.21 mm apart. The distance...
A double-slit interference pattern is created by two narrow slits spaced 0.21 mm apart. The distance between the first and the fifth minimum on a screen 61 cm behind the slits is 6.2 mm. a. Draw an intensity graph showing the interference pattern and identifying the central maximum, first minimum, fifth minimum, and the distance given in the problem declaration. b. What is the wavelength (in nm) of the light used in this experiment?
A double-slit interference pattern is created by two narrow slits spaced 0.15 mm apart. The distance...
A double-slit interference pattern is created by two narrow slits spaced 0.15 mm apart. The distance between the first and the fifth minimum on a screen 80 cm behind the slits is 6.5 mm. What is the wavelength (in nm) of the light used in this experiment? Round off your answer to 1 decimal place (ex. 304.5 nm) and include the appropriate units
Coherent light that contains two wavelengths, 660 nm and 470 nm passes through two narrow slits...
Coherent light that contains two wavelengths, 660 nm and 470 nm passes through two narrow slits with a separation of 0.26 mm. An interference pattern is observed on a screen 5.3 m from the slits. (a) Sketch the setup (b) What is the distance between the first order bright fringe for each wavelength on the screen ? (c) What is the distance between the first dark fringe for each wavelength on the screen ? (d) If electrons with the same...
Write down the condition for thin film interference. Calculate the position (angular) and the distance between...
Write down the condition for thin film interference. Calculate the position (angular) and the distance between the 3rd and 4th dark lines of the interference pattern on the screen when the slits are spaced 0.450 mm apart and are placed 80.0 cm from the screen. The slits are illuminated with coherent light of wavelength 550nm. Also calculate the distance between the 3rd and 4th dark lines when the entire apparatus was immersed in water. How this separation compares with separation...
Consider a source of light with wavelength λ = 490 nm that shines on two identical...
Consider a source of light with wavelength λ = 490 nm that shines on two identical narrow slits. The slits are separated by a distance a = 30 μm. An interference pattern is observed on a screen located a distance L away from the slits. On the screen, the location of the second dark spot to the left of the central bright spot is found to be y = 1.2 cm from the central bright spot. Let this particular position...
4) Two narrow slits are separated by a distance d. Their interference pattern is to be...
4) Two narrow slits are separated by a distance d. Their interference pattern is to be observed on a screen a large distance L away. a) Calculate the spacing y of the maxima of the screen for light of wavelength 500 nm when L = 1 m and d = 1 cm. b) Would you expect to observe the interference of light on the screen for this situation? Explain. c) How close together should the slits be placed for the...
Two narrow slits 55 μm μ m apart are illuminated with light of wavelength 620nm n...
Two narrow slits 55 μm μ m apart are illuminated with light of wavelength 620nm n m . The light shines on a screen 1.2 m m distant. a) What is the angle of the mm = 2 bright fringe? b) How far is this fringe from the center of the pattern?