Question

A positive charged thin cylindrical shell of lenght 10 m and radius 50 mm has no...

A positive charged thin cylindrical shell of lenght 10 m and radius 50 mm has no end caps and a uniform surface charge density of 5×10^-9 C/m^2.
1.What is the charge on the shell?
2.Determine the electric field magnitude far from either end of the shell at r=49 mm and also at r=51 mm,where r is the radial distance from the long central axis of the shell.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A thin cylindrical shell of radius R1=5.0cmR1=5.0cm is surrounded by a second cylindrical shell of radius...
A thin cylindrical shell of radius R1=5.0cmR1=5.0cm is surrounded by a second cylindrical shell of radius R2=8.0cmR2=8.0cm, as in the figure (Figure 1). Both cylinders are 9.0 mm long and the inner one carries a total charge Q1=−0.71μCQ1=−0.71μC and the outer one Q2=+1.56μCQ2=+1.56μC. A) For points far from the ends of the cylinders, determine the magnitude of the electric field at a radial distance r from the central axis of 5.9 cm.   B) For points far from the ends of...
A thin cylindrical shell of radius R1=5.9cm is surrounded by a second cylindrical shell of radius...
A thin cylindrical shell of radius R1=5.9cm is surrounded by a second cylindrical shell of radius R2=8.0cm, as in the figure (Figure 1). Both cylinders are 10 m long and the inner one carries a total charge Q1=−0.92μC and the outer one Q2=+1.55μC. 1. For points far from the ends of the cylinders, determine the electric field at a radial distance r from the central axis of 2.8 cm . 2. For points far from the ends of the cylinders,...
(8c23p69) A thin, metallic, spherical shell of radius a = 7.0 cm has a charge qa...
(8c23p69) A thin, metallic, spherical shell of radius a = 7.0 cm has a charge qa = 5.00×10-6 C. Concentric with it is another thin, metallic, spherical shell of radius b = 18.90 cm and charge qb = 5.00×10-6 C. Find the electric field at radial points r where r = 0.0 cm. Find the electric field at radial points r where r = 13.0 cm. Find the electric field at radial points r where r = 28.4 cm. Discuss...
Two long, charged, thin-walled, concentric cylindrical shells have radii of 1.22 and 11.47 cm. The charge...
Two long, charged, thin-walled, concentric cylindrical shells have radii of 1.22 and 11.47 cm. The charge per unit length is 3.55 × 10-6 C/m on the inner shell and 8.56 × 10-6 C/m on the outer shell. What is the magnitude electric field of E at a radial distance r = 6.39 cm??
The electric field in a point on the central axis of a uniformly charged very thin...
The electric field in a point on the central axis of a uniformly charged very thin ring is given by the expression: E = (k*lambda*2pi*R)/((x^2 +R^2)^(3/2)) i cap where R is the radius of the ring, lambda is the linear charge density, and x is the distance of the point on the central axis to the center of the ring. Use this expression (do not derive it!) to calculate the field in a point inside a thin shell with uniform...
The figure is a section of a conducting rod of radius R1 = 1.60 mm and...
The figure is a section of a conducting rod of radius R1 = 1.60 mm and length L = 12.30 m inside a thin-walled coaxial conducting cylindrical shell of radius R2 = 12.9R1 and the (same) length L. The net charge on the rod is Q1 = +3.71 × 10-12 C; that on the shell is Q2 = -2.17Q1. What are the (a) magnitude E and (b) direction (radially inward or outward) of the electric field at radial distance r...
12-A spherical ball of charged particles has a uniform charge density. From Gauss’s Law, derive equations...
12-A spherical ball of charged particles has a uniform charge density. From Gauss’s Law, derive equations for the electric field magnitude as a function of radius, inside, and outside, of the ball. Sketch and label a graph to illustrate this variation. (c) A Geiger counter is used to detect ionizing radiation. For this device, a positively charged central wire is surrounded by a concentric, conducting cylindrical shell with an equal negative charge, creating a strong radial electric field. The shell...
A cylindrical shell of radius 7.00 cm and length 2.30 m has its charge uniformly distributed...
A cylindrical shell of radius 7.00 cm and length 2.30 m has its charge uniformly distributed on its curved surface. The magnitude of the electric field at a point 18.1 cm radially outward from its axis (measured from the midpoint of the shell) is 36.0 kN/C. (a) Find the net charge on the shell. (b) Find the electric field at a point 4.00 cm from the axis, measured radially outward from the midpoint of the shell.
The current density inside a long, solid, cylindrical wire of radius a = 3.6 mm is...
The current density inside a long, solid, cylindrical wire of radius a = 3.6 mm is in the direction of the central axis and its magnitude varies linearly with radial distance r from the axis according to J = J0r/a, where J0 = 420 A/m2. Find the magnitude of the magnetic field at a distance (a) r=0, (b) r = 2.0 mm and (c) r=3.6 mm from the center.
A thin, uniformly charged spherical shell has a potential of 727 V on its surface. Outside...
A thin, uniformly charged spherical shell has a potential of 727 V on its surface. Outside the sphere, at a radial distance of 20.0 cm from this surface, the potential is 403 V. (1) Calculate the radius of the sphere. (2) Determine the total charge on the sphere (3) What is the electric potential inside the sphere at a radius of 3.0 cm (4) Calculate the magnitude of the electric field at the surface of the sphere. (5) If an...