Question

We drop a 22.8 g ice cube at 0∘C into 1000 g of water at 20∘C....

We drop a 22.8 g ice cube at 0∘C into 1000 g of water at 20∘C. Find the total change of entropy of the ice and water when a common temperature has been reached.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 100g ice cube at 0°C is placed in 400g of water at 30°C. If the...
A 100g ice cube at 0°C is placed in 400g of water at 30°C. If the container is perfectly insulated, what will be the final temperature when all the ice has been melted? The specific heat of water is 4.184 kJ/kg. K. The latent heat of fusion for water at 0°C is approximately 334 kJ/kg (or 80 cal/g).
A 112-g cube of ice at 0°C is dropped into 1.0 kg of water that was...
A 112-g cube of ice at 0°C is dropped into 1.0 kg of water that was originally at 82°C. What is the final temperature of the water after the ice has melted? in C
A 112-g cube of ice at 0°C is dropped into 1.0 kg of water that was...
A 112-g cube of ice at 0°C is dropped into 1.0 kg of water that was originally at 84°C. What is the final temperature of the water after the ice has melted? _________°C
An 11 g ice cube at -12˚C is put into a Thermos flask containing 145 cm3...
An 11 g ice cube at -12˚C is put into a Thermos flask containing 145 cm3 of water at 24˚C. By how much has the entropy of the cube-water system changed when a final equilibrium state is reached? The specific heat of ice is 2200 J/kg K and that of liquid water is 4187 J/kg K. The heat of fusion of water is 333 × 103 J/kg. and A 6.0 g ice cube at -21˚C is put into a Thermos...
An 10 g ice cube at -13˚C is put into a Thermos flask containing 115 cm3...
An 10 g ice cube at -13˚C is put into a Thermos flask containing 115 cm3 of water at 20˚C. By how much has the entropy of the cube-water system changed when a final equilibrium state is reached? The specific heat of ice is 2200 J/kg K and that of liquid water is 4187 J/kg K. The heat of fusion of water is 333 × 103 J/kg.
A 81-g ice cube at 0°C is placed in 930 g of water at 30°C. What...
A 81-g ice cube at 0°C is placed in 930 g of water at 30°C. What is the final temperature of the mixture?
The net entropy changes when a 33 g -ice cube initially at 0 ?C melts in...
The net entropy changes when a 33 g -ice cube initially at 0 ?C melts in a room. a) What is the net entropy change, if room temperature T1= 19 ?C . Express your answer to two significant figures and include the appropriate units. b) What is the net entropy change, if room temperature T2= 25 ?C . Express your answer to two significant figures and include the appropriate units.
A(n) 70-g ice cube at 0°C is placed in 960 g of water at 24°C. What...
A(n) 70-g ice cube at 0°C is placed in 960 g of water at 24°C. What is the final temperature of the mixture? ______ °C
A piece of ice at 0 0C is put in 2.00 Kg of water at 20...
A piece of ice at 0 0C is put in 2.00 Kg of water at 20 0C. The equilibrium temperature of the system becomes 5 0C. (Lf=333 kJ/Kg, cw=4186 J/Kg, TK=TC+273.15) a) Find the mass of ice? Kg b) Find the entropy change of ice? J/K c) Find the entropy change of water? J/K d) Find the total entropy change of sysem? J/K
A 50.0 g ice cube at 0.0 degrees C is placed in a lake whose temperature...
A 50.0 g ice cube at 0.0 degrees C is placed in a lake whose temperature is 14.0 degrees C. Calculate the change in entropy (in joules/Kelvin) of the system as the ice cube comes to thermal equilibrium with the lake. (c for water = 4186 J/kg-K)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT