Question

In a photoelectric experiment, the work function of the material from which electrons are ejected equals...

In a photoelectric experiment, the work function of the material from which electrons are ejected equals 2.5eV. What is the maximum wavelength of light for which electrons are ejected from this material and what stopping voltage is required when light, having a wave lengthof 3.5x 10-7m, is used with this material(if one may take for Planck’s constant, h = 6.63 x 10−34Js, for the speed of light, c = 3.0 x 108m/s, and noting that:1 eV = 1.6 x 10−19J)?

Homework Answers

Answer #1

The maximum wavelength corresponds to minimum energy which means the electron will be just ejected and kinetic energy will be zero :

Thumbs up if you like the answer :)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The photoelectric work function of potassium is 2.1 eV. If light that has a wavelength of...
The photoelectric work function of potassium is 2.1 eV. If light that has a wavelength of 180 nm falls on potassium Part A: Find the stopping potential for light of this wavelength (V = ______ units) Part B: Find the kinetic energy, in electron volts, of the most energetic electrons ejected (K = ______ eV) Part C: Find the speeds of these electrons (vmax = ______ units)
a) A photon of wavelength 43 nm is incident upon a metal in a photoelectric apparatus....
a) A photon of wavelength 43 nm is incident upon a metal in a photoelectric apparatus. A stopping voltage of 21 V was obtained. What is the threshold frequency of the metal? (format of a.b x 10cdHz) b) Light with a frequency of 5.00 x 1014 Hz illuminates a photoelectric surface that has a work function of 2.10 x 10-19 J. What is the maximum kinetic energy of the emitted photoelectrons? (format of a.bc x 10-de J ) c) Light...
In a photoelectric e↵ect experiment, the maximum kinetic energy of electrons ejected from a cesium metal...
In a photoelectric e↵ect experiment, the maximum kinetic energy of electrons ejected from a cesium metal plate is found to be 0.57eV when the plate is illuminated with 500 nm light. (a) Given what we know about the relation of wavelength and energy, how much energy does a single photon of 500 nm light have? (b) Given the results of this experiment, how much energy must the electron have used to break free of the atom? (c) When the same...
Light of wavelength 235 nm is incident on Magnesium in a photoelectric effect experiment. The work...
Light of wavelength 235 nm is incident on Magnesium in a photoelectric effect experiment. The work function of Magnesium is 3.68 eV. (a) What is the maximum kinetic energy of the emitted electrons, in eV? (b)What is the maximum velocity of the emitted electrons, in m/s? (c) What is the stopping potential, in Volts, that results in no collected photoelectrons? (d) Light of wavelength 235 nm is now incident on lead (work function 5.40 eV). What is the maximum kinetic...
a) A photoelectric surface has a work function of 3.30 x 10-19 J. What is the...
a) A photoelectric surface has a work function of 3.30 x 10-19 J. What is the threshold frequency of this surface? (format of a.bc x 10de Hz) b) What is the stopping voltage of an electron that has 5.40 x 10-19 J of kinetic energy? (3 digit answer) c) A photoelectric surface requires a light of maximum wavelength of 675 nm to cause electron emission. What is the work function (in eV) of this surface? (3 digit answer) d) A...
A) You are setting up a photoelectric effect experiment with an unknown metal surface. Which of...
A) You are setting up a photoelectric effect experiment with an unknown metal surface. Which of the following wavelengths of light is most likely to cause electrons to be ejected from the surface? 700 nm they are all equally likely to work 500 nm 300 nm 900 nm B) Suppose you try the experiment with the light you chose in the previous question, and you get ejected electrons with a maximum kinetic energy of 2.5 eV. What will happen if...
Potassium and gold cathodes are used in a photoelectric-effect experiment. For each cathode, find: 1. The...
Potassium and gold cathodes are used in a photoelectric-effect experiment. For each cathode, find: 1. The threshold frequency 2. The threshold wavelength 3. The maximum electron ejection speed if the light has a wavelength of 210 nm 4. The stopping potential if the wavelength is 210 nm. Throughout this problem, be sure to use 6.63 x 10^-34 J•s for Planck's constant.
A. What is the energy in 10-3 eV of a photon that has a momentum of...
A. What is the energy in 10-3 eV of a photon that has a momentum of 6.13×10−29 kg ⋅ m/s ? B. What is the energy in 10-9 eV of a photon in a radio wave from an AM station that has a 1,506 kHz broadcast frequency? C. Calculate the frequency in 1020 Hz of a 0.571 MeV γ-ray photon. D. A certain molecule oscillates with a frequency of 1.73×1013 Hz. What is the approximate value of n for a...
The work function of a material is the minimum energy required to emit an electron from...
The work function of a material is the minimum energy required to emit an electron from the material. The work function of Ag is 7.59 x 10^ -19 J a) If I'm in Australia (where a lot more UV light makes it through the depleted ozone layer ...) and I'm wearing silver earrings when the sun comes out irradaiting me with light that has a wavelength of 185 nm, will electrons be emitted from the earrings? b) If radiation hits...
1) Describe an example of each of the following that may be found of your kitchen:...
1) Describe an example of each of the following that may be found of your kitchen: Explain how your choice falls into this category, and if there is a chemical name or symbol for it, provide that as well. Provide a photo of your example with your ID card in it. a) a compound b) a heterogeneous mixture c) an element (symbol) Moving to the Caves… Lechuguilla Caves specifically. Check out this picture of crystals of gypsum left behind in...