Question

Exercise 3. Consider a particle with mass m in a two-dimensional infinite well of length L,...

Exercise 3. Consider a particle with mass m in a two-dimensional infinite well of length L, x, y [0, L]. There is a weak potential in the well given by

V (x, y) = V0L2δ(x x0)δ(y y0) .

  1. Evaluate the first order correction to the energy of the ground state.   
  2. Evaluate the first order corrections to the energy of the first excited states for x0 =y0 = L/4.
  3. For the first excited states, find the points (x0, y0) that do not remove the degeneracy to first order in V0.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a three dimensional rectangular infinite potential well with sides of length L, 2L and 3L....
Consider a three dimensional rectangular infinite potential well with sides of length L, 2L and 3L. What is the energy of the first excited state relative to the energy of the ground state? What is the energy of the second excited state relative to the energy of the ground state? What is the energy of the third excited state relative to the energy of the ground state? What is the energy of the fourth excited state relative to the energy...
Consider a two-dimensional squared-well of dimensions L × L. The length L is such, that the...
Consider a two-dimensional squared-well of dimensions L × L. The length L is such, that the ground state energy of one electron confined in this box is 0.1eV. (a) Write down the 5 lowest energy states and their corresponding degeneracy (your energy values must all be different!) and label them E1 · · · E5 (b) If the electron finds itself in one of the states with energy E5, how much energy would be required to lift the electron from...
Consider a two-dimensional squared-well of dimensions L × L. The length L is such, that the...
Consider a two-dimensional squared-well of dimensions L × L. The length L is such, that the ground state energy of one electron confined in this box is 0.1eV. (a) Write down the 5 lowest energy states and their corresponding degeneracy (your energy values must all be different!) and label them E1 · · · E5 (b) If the electron finds itself in one of the states with energy E5, how much energy would be required to lift the electron from...
An electron is trapped in an infinite one-dimensional well of width = L. The ground state...
An electron is trapped in an infinite one-dimensional well of width = L. The ground state energy for this electron is 3.8 eV. a) Calculated energy of the 1st excited state. b) What is the wavelength of the photon emitted between 1st excited state and ground states? c) If the width of the well is doubled to 2L and mass is halved to m/2, what is the new 3nd state energy? d) What is the photon energy emitted from the...
A particle is in the ground state of an infinite square well. The potential wall at...
A particle is in the ground state of an infinite square well. The potential wall at x = L suddenly (i.e., instantaneously) moves to x = 3L. such that the well is now three times its original size. (a) Let t = 0 be at the instant of the sudden change in the potential well. What is ψ(x, 0)? (b) If you measure the energy of the particle in the new well, what are the possible energies? (c) Estimate the...
A particle is confined to the one-dimensional infinite potential well of width L. If the particle...
A particle is confined to the one-dimensional infinite potential well of width L. If the particle is in the n=2 state, what is its probability of detection between a) x=0, and x=L/4; b) x=L/4, and x=3L/4; c) x=3L/4, and x=L? Hint: You can double check your answer if you calculate the total probability of the particle being trapped in the well. Please answer as soon as possible.
II(20pts). Short Problems a) The lowest energy of a particle in an infinite one-dimensional potential well...
II(20pts). Short Problems a) The lowest energy of a particle in an infinite one-dimensional potential well is 4.0 eV. If the width of the well is doubled, what is its lowest energy? b) Find the distance of closest approach of a 16.0-Mev alpha particle incident on a gold foil. c) The transition from the first excited state to the ground state in potassium results in the emission of a photon with  = 310 nm. If the potassium vapor is...
Consider a particle trapped in an infinite square well potential of length L. The energy states...
Consider a particle trapped in an infinite square well potential of length L. The energy states of such a particle are given by the formula: En=n^2ℏ^2π^2 /(2mL^2 ) where m is the mass of the particle. (a)By considering the change in energy of the particle as the length of the well changes calculate the force required to contain the particle. [Hint: dE=Fdx] (b)Consider the case of a hydrogen atom. This can be modeled as an electron trapped in an infinite...
A particle of mass m moves in a one-dimensional box of length L, with boundaries at...
A particle of mass m moves in a one-dimensional box of length L, with boundaries at x = 0 nm and x = 5 nm. Thus, V (x) = 0 for 0 ≤ x ≤ 5 nm, and V (x) = ∞ elsewhere. a) Can light excite a particle from its ground state to the fourth excited state? Mathematically support your answer. b) If the optical transition in (a) is possible, what is the required wavelength of light that generates...
Consider a spinless particle of mass m, which is moving in a one-dimensional infinite potential well...
Consider a spinless particle of mass m, which is moving in a one-dimensional infinite potential well with walls at x = 0 and x = a. If and are given in Heisenberg picture, how can we find them in Schrodinger and interaction picture?