Question

2- A certain amount of H2O in a closed rigid cylinder is cooled from T1 =...

2- A certain amount of H2O in a closed rigid cylinder is cooled from T1 = 800 ° F and P1 = 100 lbf / in2 to P2 = 20 lbf / in2. Determine the specific entropy change in Btu / (lb ° R).

Homework Answers

Answer #1

The specific heat of water at higher temperature is 4.767 X 10-4 Btu/(lb.°R).

The change in entropy in isochoric process ( in which volume remains unchanged) is given by

..............(1)

All symbols has their ususal meaning.

Here we need the value of n (total number of moles of H2O present in the container) too.

Let the to m mass of H2O is present in the container. The molecular weight (M) of the water is 18.02 gram/mol.

Therefore, the total number of moles of water in the container is

Now, we can modify equation (1) as

The specific entropy is defined as

Therefore, the specific entropy change in the given problem is

  

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1- A certain amount of O2, as an ideal gas, is contained in a cylinder-piston system...
1- A certain amount of O2, as an ideal gas, is contained in a cylinder-piston system and develops a process from T1 = 300 K, P1 = 200 kPa to T2 = 1500 K and P2 = 150 kPa. Determine the specific entropy change in kJ / (kg K). 2- A certain amount of H2O in a closed rigid cylinder is cooled from T1 = 800 ° F and P1 = 100 lbf / in2 to P2 = 20 lbf...
Water vapor is cooled in a closed, rigid tank from T1 = 360°C and p1 =...
Water vapor is cooled in a closed, rigid tank from T1 = 360°C and p1 = 100 bar to a final temperature of T2 = 320°C. Determine the final specific volume, v2, in m3/kg, and the final pressure, p2, in bar.
Water vapor is cooled in a closed, rigid tank from T1 = 400°C and p1 =...
Water vapor is cooled in a closed, rigid tank from T1 = 400°C and p1 = 100 bar to a final temperature of T2 = 320°C. Determine the final specific volume, v2, in m3/kg, and the final pressure, p2, in bar.
A closed, rigid steel tank contains 1 lbm of water, initially at 260 F and a...
A closed, rigid steel tank contains 1 lbm of water, initially at 260 F and a quality of 60%. The tank is fitted with a paddle wheel and the water is stirred until the temperature is 350 F. The tank is well insulated on the outside and the steel is in thermal equilibrium with the water. The mass of the steel tank itself (not including water) is 60 lbm and the specific heat of the tank is 0.115 Btu/lbm·R. Changes...
A gas undergoes a process in a piston–cylinder assembly during which the pressure-specific volume relation is...
A gas undergoes a process in a piston–cylinder assembly during which the pressure-specific volume relation is pv1.2 = constant. The mass of the gas is 0.4 lb and the following data are known: p1 = 160 lbf/in.2, V1 = 1 ft3, and p2 = 300 lbf/in.2 During the process, heat transfer from the gas is 2.1 Btu. Kinetic and potential energy effects are negligible. Determine the change in specific internal energy of the gas, in Btu/lb. Δu⁢=
A closed, rigid steel tank contains 1 lbm of water, initially at 260F and a quality...
A closed, rigid steel tank contains 1 lbm of water, initially at 260F and a quality of 60%. The tank is fitted with a paddle wheel and the water is stirred until the temperature is 350F. The tank is well insulated on the outside and the steel is in thermal equilibrium with the water. The mass of the steel tank itself (not including water) is 60 lbm and the specific heat of the tank is 0.115 Btu/lbm·R. Changes in kinetic...
Ammonia contained in a piston–cylinder assembly, initially saturated vapor at T1 = 4°F, undergoes an isothermal...
Ammonia contained in a piston–cylinder assembly, initially saturated vapor at T1 = 4°F, undergoes an isothermal process to a final specific volume v2 = 5.2 ft3/lb. Determine the final pressure, in lbf/in2, and the final quality, x2.
H3.3 A frictionless piston-cylinder device contains 2 kg of H2O initially at T1 = 300◦C and...
H3.3 A frictionless piston-cylinder device contains 2 kg of H2O initially at T1 = 300◦C and p1 = 5 bar. The device is cooled at constant pressure until the volume is ∀2 = 0.5 m3 . Assume a quasiequillibrium process which occurs slowly with no acceleration as the piston moves. Kinetic and potential energy effects are negligible. Determine: a. work [kJ] during process (indicate magnitude and direction) b. heat transfer [kJ] during process (indicate magnitude and direction)
Steam, initially at 700 lbf/in.2, 550°F undergoes a polytropic process in a piston–cylinder assembly to a...
Steam, initially at 700 lbf/in.2, 550°F undergoes a polytropic process in a piston–cylinder assembly to a final pressure of 2200 lbf/in.2 Kinetic and potential energy effects are negligible. Determine the heat transfer, in Btu per lb of steam, for a polytropic exponent of 1.4, (a) using data from the steam tables. (b) assuming ideal gas behavior.
Steam undergoes an isentropic compression in an insulated piston–cylinder assembly from an initial state where T1...
Steam undergoes an isentropic compression in an insulated piston–cylinder assembly from an initial state where T1 = 120°C, p1 = 1 bar to a final state where the pressure p2 = 20 bar. Determine the final temperature, in °C, and the work, in kJ per kg of steam. The final temperature equals 513.87°C.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT