Question

Two particles having charges of 0.580 nC and 5.22 nC are separated by a distance of...

Two particles having charges of 0.580 nC and 5.22 nC are separated by a distance of 1.80 m . At what point along the line connecting the two charges is the net electric field due to the two charges equal to zero?Where would the net electric field be zero if one of the charges were negative?

Homework Answers

Answer #1

let
q1 = 0.58 nC
q2 = 5.22 nC
d = 1.80 m

let x is the distance from q1 where net elctric field is zero. Here the point must be between the two charges.

Apply,|E1| = |E2|

k*q1/x^2 = k*q2/(d - x)^2

(d-x)^2/x^2 = q2/q1

(d-x)/x = sqrt(q2/q1)

(1.8 - x)/x = sqrt(5.22/0.58)

1.8 - x = 3*x

1.8 = 4*x

==> x = 1.8/4

= 0.45 m from q1 <<<<<<<<-----------Answer

If one of the charges is negative.
let
q1 = -0.58 nC
q2 = 5.22 nC
d = 1.80 m

let x is the distance from q1 where net elctric field is zero. Here the point is not between the two charges.

Apply, |E1| = |E2|

k*q1/x^2 = k*q2/(d + x)^2

(d+x)^2/x^2 = q2/q1

(d+x)/x = sqrt(q2/q1)

(1.8 + x)/x = sqrt(5.22/0.58)

1.8 + x = 3*x

1.8 = 2*x

==> x = 1.8/2

= 0.90 m from q1 <<<<<<<<-----------Answer

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two particles having charges of 0.430 nC and 3.87 nC are separated by a distance of...
Two particles having charges of 0.430 nC and 3.87 nC are separated by a distance of 1.20 mm. 1)At what point along the line connecting the two charges is the net electric field due to the two charges equal to zero? Express your answer in meters. 2)Where would the net electric field be zero if one of the charges were negative? Enter your answer as a distance in meters from the charge initially equal to 0.430 nC. 3)Is this point...
Two particles having charges q1 = 0.400 nC and q2 = 6.00 nC are separated by...
Two particles having charges q1 = 0.400 nC and q2 = 6.00 nC are separated by a distance of 1.60 m . At what point along the line connecting the two charges is the total electric field due to the two charges equal to zero?
Part A) Two particles with positive charges q1 and q2 are separated by a distance s....
Part A) Two particles with positive charges q1 and q2 are separated by a distance s. Along the line connecting the two charges, at what distance from the charge q1 is the total electric field from the two charges zero? Express your answer in terms of some or all of the variables s, q1, q2 and k =14πϵ0. If your answer is difficult to enter, consider simplifying it, as it can be made relatively simple with some work. Part B)...
Two charges, one is - 34 nC and other is 2* 34 nC are separated by...
Two charges, one is - 34 nC and other is 2* 34 nC are separated by 2 m distance. What is the electric field at the mid point of the line joining the charges?
Point charges q1=− 4.90 nC and q2=+ 4.90 nC are separated by distance 3.90 mm ,...
Point charges q1=− 4.90 nC and q2=+ 4.90 nC are separated by distance 3.90 mm , forming an electric dipole. Part A Find the magnitude of the electric dipole moment. Express your answer in coulomb meters to three significant figures. Part B What is the direction of the electric dipole moment? Part C The charges are in a uniform electric field whose direction makes an angle 36.7 ∘ with the line connecting the charges. What is the magnitude of this...
Two stationary positive point charges, charge 1 of magnitude 3.80 nC and charge 2 of magnitude...
Two stationary positive point charges, charge 1 of magnitude 3.80 nC and charge 2 of magnitude 1.80 nC , are separated by a distance of 55.0 cm . An electron is released from rest at the point midway between the two charges, and it moves along the line connecting the two charges. 1. What is the speed vfinal of the electron when it is 10.0 cm from charge 1?
Two point charges, each +2.00 nC, are separated by 10 mm. (4 parts) A) What is...
Two point charges, each +2.00 nC, are separated by 10 mm. (4 parts) A) What is the force between the two charges? Is it attractive or repulsive? B) What is the strength and direction of the electric field due to ONE of the charges, 5.00 mm away from the charge? C) What is the strength of the total electric field halfway between the two charges? D) If a -3.00 nC charge were places halfway between the two charges, what would...
Two stationary point charges of 4.00nC and 2.00nC are separated by a distance of 60.0cm ....
Two stationary point charges of 4.00nC and 2.00nC are separated by a distance of 60.0cm . An electron is released from rest at a point midway between the charges and moves along the line connecting them. What is the electric potential energy of the electron when it is at the midpoint? In J. 14.0cm from the 4.00nC charge? Please help!!! Thank you in advance!
Two charges, -13 C and +3.0 C, are fixed in place and separated by 3.8 m....
Two charges, -13 C and +3.0 C, are fixed in place and separated by 3.8 m. (a) At what spot along a line through the charges is the net electric field zero? Give the distance of the spot to the positive charge in meters (m). (b) What would be the force on a charge of +14 C placed at this spot?
Two-point charges, q1 = 25 nC and q2 = -75 nC are separated by a distance...
Two-point charges, q1 = 25 nC and q2 = -75 nC are separated by a distance r = 3.0 cm. Find the force between the two charges.