Question

A charged paint is spread in a very thin uniform layer over the surface of a...

A charged paint is spread in a very thin uniform layer over the surface of a plastic sphere of diameter 15.0 cmcm, giving it a charge of -29.0 μCμC.

A) Find the electric field just inside the paint layer

B)Find the electric field just outside the paint layer.

C)Find the electric field 8.00 cmcm outside the surface of the paint layer.

Homework Answers

Answer #1

Dear student,

Find this solution, and RATE IT ,If you find it is helpful .your rating is very important to me.If any incorrectness ,kindly let me know I will rectify them soon.

Thanks for asking ..

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A charged paint is spread in a very thin uniform layer over the surface of a...
A charged paint is spread in a very thin uniform layer over the surface of a plastic sphere of diameter 14.0 cm , giving it a charge of -29.0 μC . Part A Find the electric field just inside the paint layer. Part B Find the electric field just outside the paint layer. Part C Find the electric field 6.00 cm outside the surface of the paint layer.
A charged paint is spread in a very thin uniform layer over the surface of a...
A charged paint is spread in a very thin uniform layer over the surface of a plastic sphere of diameter 12.0 cm , giving it a charge of -18.0 ?C . Find the electric field just inside the paint layer. Find the electric field just outside the paint layer. Find the electric field 6.50 cm outside the surface of the paint layer.
A hollow, conducting sphere with an outer radius of 0.260 mm and an inner radius of...
A hollow, conducting sphere with an outer radius of 0.260 mm and an inner radius of 0.200 mm has a uniform surface charge density of +6.57 ×× 10−6−6 C/m2C/m2. A charge of -0.700 μCμC is now introduced into the cavity inside the sphere. What is the new charge density on the outside of the sphere? Calculate the strength of the electric field just outside the sphere. What is the electric flux through a spherical surface just inside the inner surface...
A thin, uniformly charged spherical shell has a potential of 727 V on its surface. Outside...
A thin, uniformly charged spherical shell has a potential of 727 V on its surface. Outside the sphere, at a radial distance of 20.0 cm from this surface, the potential is 403 V. (1) Calculate the radius of the sphere. (2) Determine the total charge on the sphere (3) What is the electric potential inside the sphere at a radius of 3.0 cm (4) Calculate the magnitude of the electric field at the surface of the sphere. (5) If an...
The electric field in a point on the central axis of a uniformly charged very thin...
The electric field in a point on the central axis of a uniformly charged very thin ring is given by the expression: E = (k*lambda*2pi*R)/((x^2 +R^2)^(3/2)) i cap where R is the radius of the ring, lambda is the linear charge density, and x is the distance of the point on the central axis to the center of the ring. Use this expression (do not derive it!) to calculate the field in a point inside a thin shell with uniform...
Two very large parallel sheets are 5.00 cmcm apart. Sheet A carries a uniform surface charge...
Two very large parallel sheets are 5.00 cmcm apart. Sheet A carries a uniform surface charge density of -8.80 μC/m2μC/m2 , and sheet B, which is to the right of A, carries a uniform charge of -12.3 μC/m2μC/m2 . Assume the sheets are large enough to be treated as infinite. a)Find the magnitude of the net electric field these sheets produce at a point 4.00 cmcm to the right of sheet A. c)Find the magnitude of the net electric field...
A charge is spread out uniformly over a small non-conducting sphere. The small sphere shares a...
A charge is spread out uniformly over a small non-conducting sphere. The small sphere shares a center with a larger spherical shell with an inner radius of 6 ?? and an outer radius of 12 ??. a) Using Gauss’ Law, what is the magnitude of the charge on the nonconducting sphere if the field from the sphere is measured to be 8200 ?/? when 0.5 ?? from the center? b) What is the surface charge density on the inside of...
A solid, nonconducting sphere of radius R = 6.0cm is charged uniformly with an electrical charge...
A solid, nonconducting sphere of radius R = 6.0cm is charged uniformly with an electrical charge of q = 12µC. it is enclosed by a thin conducting concentric spherical shell of inner radius R, the net charge on the shell is zero. a) find the magnitude of the electrical field E1  inside the sphere (r < R) at the distance r1 = 3.0 cm from the center. b) find the magnitude of the electric field E2 outside the shell at the...
Two thin plastic spherical shells (shown in cross section in the figure below) are uniformly charged....
Two thin plastic spherical shells (shown in cross section in the figure below) are uniformly charged. The center of the larger sphere is at (0, 0); it has a radius of 12 cm and a uniform positive charge of +7 ✕ 10−9 C. The center of the smaller sphere is at (27 cm, 0); it has a radius of 3 cm and a uniform negative charge of −3 ✕ 10−9 C. (a) What are the components EA,x and EA,y of...
A total charge Q is uniformly distributed, with surface charge density, over a very thin disk...
A total charge Q is uniformly distributed, with surface charge density, over a very thin disk of radius R. The electric field at a distance d along the disk axis is given by E where n is a normal unit vector perpendicular to the disk. What is the best approximation for the electric field magnitude E at large distances from the disk?