Question

One yak, (m1) with a mass 500 kg is sitting still on a frictionless surface when...

One yak, (m1) with a mass 500 kg is sitting still on a frictionless surface when a smaller yak (m2) charges into it at a velocity of 15 m/s in a direction 30° north of west. After the two collide the smaller yak is traveling due west while the larger yak is traveling due north. The smaller yak’s final speed is twice that of the larger yak. What is (a) the mass and (b) the final speed of the smaller yak?

Homework Answers

Answer #1

Concept - use conservation of linear momentum separately along the coordinate axes and hence find the mass and speed of the smaller yak as shown below. Take positive Y axis along north and positive X axis along east

***********************************************************************************************
This concludes the answers. If there is any mistake or omission, let me know immediately and I will fix it....

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A cart of mass m1 = 8.8 kg, moving on frictionless surface with a speed of...
A cart of mass m1 = 8.8 kg, moving on frictionless surface with a speed of 2.5 m/s makes an elastic collision with a cart of unknown mass m2 moving at an unknown speed toward m1 . After the collision, the 8.8 kg cart recoils with a speed of 9.2 m/s as shown in the figure but now m2 is at rest. Find the mass of m2.
A block of mass m1 is traveling to the right with a velocity of v1i. A...
A block of mass m1 is traveling to the right with a velocity of v1i. A block of mass m2 is traveling to the left at v2i. Both are on a frictionless, flat surface. Let the speed v2i = (1/2)v1i and m2 = 3m1. The two blocks collide elastically. (1) What is the final velocity of block m1 (in terms of v1,i)? (2) What is the final velocity of block m2 (in terms of v1,i)? (3) What is the change...
A car of mass m1 = 2000.0 kg is moving at speed v1i = 20.0m/s towards...
A car of mass m1 = 2000.0 kg is moving at speed v1i = 20.0m/s towards East. A truck of mass m2 = 5000.0 kg is moving at speed v2i = 10.0m/s towards North. They collide at an intersection and get entangled (complete inelastic collision). 1. What is the magnitude and direction of the final velocity of the entangled automobiles? 2. How much kinetic energy is lost in the collision. That is, calculate the change in the kinetic energy of...
A bullet is fired toward a block of wood (m1 = 1.17 kg) sitting on a...
A bullet is fired toward a block of wood (m1 = 1.17 kg) sitting on a frictionless surface. The bullet has a mass mb = 30 g, and its initial velocity is 320 m/s in the +x-direction. The bullet embeds itself inside the block of wood. Then the block of wood (with bullet) collides with another block of wood (m2 = 1.20 kg). The collision is elastic. The first block moves off at an angle of -45o with respect to...
A block moving with speed vo = 10 m/s and mass m1 = 6 kg collides...
A block moving with speed vo = 10 m/s and mass m1 = 6 kg collides with a block of mass m2 = 5 kg initially at rest. (Both slide on a frictionless surface at all times.) Now the two blocks collide with a third block initially at rest. What is the final momentum of the system? Question options: A) 30 kg-m/s B) 60 kg-m/s C) 190 kg-m/s D) 250 kg-m/s E) 310 kg-m/s
Mass A (3 kg) and Mass B (1 kg) collide head‐on on a frictionless surface.  A was...
Mass A (3 kg) and Mass B (1 kg) collide head‐on on a frictionless surface.  A was initially moving to the right at 0.2 m/s, while B was moving at 0.4 m/s to the left.  The collision is completely elastic. a) Find the velocity (magnitude and direction) for each mass after the collision.  Treat this as a one dimensional problem. b) Find the change in momentum for each mass.  Compare. c) Find the change in kinetic energy for each mass.  Compare.
Mass A (8.5 kg) slides across a frictionless surface with a velocity of 6 m/s in...
Mass A (8.5 kg) slides across a frictionless surface with a velocity of 6 m/s in the positive direction. Mass B (8.5 kg) slides across the same surface in the opposite direction with a velocity of ?12 m/s. The two objects collide and stick together after the collision. Calculate the center-of-mass velocity (in m/s) of the system both before and after the collision. (Indicate the direction with the sign of your answer.)
Block 1, of mass m1 = 12.3 kg , moves along a frictionless air track with...
Block 1, of mass m1 = 12.3 kg , moves along a frictionless air track with speed v1 = 13.0 m/s . It collides with block 2, of mass m2 = 39.0 kg , which was initially at rest. The blocks stick together after the collision. Find the magnitude pi of the total initial momentum of the two-block system. Find vf, the magnitude of the final velocity of the two-block system. What is the change ΔK=Kfinal−Kinitial in the two-block system's...
Block 1, of mass m1 = 1.70 kg , moves along a frictionless air track with...
Block 1, of mass m1 = 1.70 kg , moves along a frictionless air track with speed v1 = 29.0 m/s . It collides with block 2, of mass m2 = 59.0 kg , which was initially at rest. The blocks stick together after the collision. (Figure 1) Find the magnitude pi of the total initial momentum of the two-block system. Find vf, the magnitude of the final velocity of the two-block system. What is the change ΔK=Kfinal−Kinitial in the...
Block 1, of mass m1 = 5.30 kg , moves along a frictionless air track with...
Block 1, of mass m1 = 5.30 kg , moves along a frictionless air track with speed v1 = 31.0 m/s . It collides with block 2, of mass m2 = 51.0 kg , which was initially at rest. The blocks stick together after the collision. A.Find the magnitude pi of the total initial momentum of the two-block system. B.Find vf, the magnitude of the final velocity of the two-block system. C. What is the change ΔK=Kfinal−Kinitial in the two-block...