Question

An object with a height of 47 cm is placed 2.0 m in front of a...

An object with a height of 47 cm is placed 2.0 m in front of a convex mirror with a focal length of -0.46 m .

A:

Find the location of the image produced by the mirror using the mirror and magnification equations. (answer in Meters)

B:

Is it 1. In front of the mirror or 2. behind the mirror.

C:

Find the magnification of the image produced by the mirror using the mirror and magnification equations.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An object 2.00 cm high is placed 12.0 cm in front of a mirror with radius...
An object 2.00 cm high is placed 12.0 cm in front of a mirror with radius of curvature of 8.00 cm. (a) Suppose the mirror is a convex mirror. Determine the focal length of the mirror, and use a scale drawing to measure the image distance, its magnification, image height, and if the image is real or virtual. (b) For the mirror in part (a), calculate the image distance, its magnification, image height, and if the image is real or...
An object with a height of 0.42 m is placed 0.50 m in front of a...
An object with a height of 0.42 m is placed 0.50 m in front of a mirror with a focal length of 1.00 m. a) Determine the location of the image. b) Determine the magnification. c) Determine the size (height) of the image. Explain choice by using sign convention. d) Is the image real or virtual? e) Is it upright or inverted? f) Is it enlarged or reduced?
An object 2.00cm high is placed 12.0cm in front of a mirror with radius of curvature...
An object 2.00cm high is placed 12.0cm in front of a mirror with radius of curvature of 8.00 cm. (a) Suppose the mirror is a convex mirror. Determine the focal length of the mirror, and use a scale drawing to measure the image distance, its magnification, image height, and if the image is real or virtual. (b) For the mirror in part (a), calculate the image distance, its magnification, image height, and if the image is real or virtual using...
Principal Ray Diagrams and Equations 1.) An object is 6 cm in front of a convex...
Principal Ray Diagrams and Equations 1.) An object is 6 cm in front of a convex mirror with a focal length of 10 cm. a.) Use ray tracing alone to determine the location and magnification of the image. Is the image upright or inverted? Is it real or virtual? b.) Use equations alone to determine the location and magnification of the image. Is the image upright or inverted? Is it real or virtual? 2.) A 2.0-cm-tall object is 20 cm...
3: An object of height 2.6 cm is placed 26 cm in front of a diverging...
3: An object of height 2.6 cm is placed 26 cm in front of a diverging lens of focal length 15 cm. Behind the diverging lens, and 11 cm from it, there is a converging lens of the same focal length. (a) Find the location of the final image, in centimeters beyond the converging lens. s''= (b) What is the magnification of the final image? Include its sign to indicate its orientation with respect to the object. mtotal=
object of height 25.0 cm is placed 50.0 cm in front of a spherical mirror of...
object of height 25.0 cm is placed 50.0 cm in front of a spherical mirror of focal length 35.0 cm. The image is formed on the opposite side of the mirror. (2 points each) a) Is the image real or virtual, and why? b) Is the mirror concave or convex, and why? c) Is the image upright or inverted, and why? d) What is the image distance? e) What is the image height?
An object 6 cm high is placed 12 cm in front of a 4 cm focal...
An object 6 cm high is placed 12 cm in front of a 4 cm focal length convex lens. (a) Draw a ray diagram to produce an image. (b) Calculate the image location and magnification using the lens equation. (c) How close is your image position and height to your calculated value (% difference)?
A 28 cm tall object is placed in front of a concave mirror with a radius...
A 28 cm tall object is placed in front of a concave mirror with a radius of 37 cm. The distance of the object to the mirror is 94 cm. Calculate the focal length of the mirror. Calculate the image distance. Calculate the magnification of the image (Remember, a negative magnification corresponds to an inverted image). Calculate the magnitude of the image height.
A 3.0 cm high object is placed 5.0 m in front of a concave spherical mirror...
A 3.0 cm high object is placed 5.0 m in front of a concave spherical mirror with radius of curvature 2.0 m. A) At what distance from the mirror is the image formed? B) What is the magnification? C) How high is the image? D) Is the image upright or inverted? Is the image real or virtual? E) Draw a ray diagram for the image formed for the same object at the same location by the aforementioned mirror. Also, check...
An object is placed 50 cm in front of a concave mirror of 60 cm radius....
An object is placed 50 cm in front of a concave mirror of 60 cm radius. Determine the focal length, image distance, linear magnification, object size if the image is produced was 3 cm, and define the image produced.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT