Question

A 5.00-g bullet moving with an initial speed of v0 = 410 m/s is fired into...

A 5.00-g bullet moving with an initial speed of v0 = 410 m/s is fired into and passes through a 1.00-kg block, as in the figure below. The block, initially at rest on a frictionless horizontal surface, is connected to a spring with a spring constant of 940 N/m.
(a) If the block moves 5.00 cm to the right after impact, find the speed at which the bullet emerges from the block.
(b) If the block moves 5.00 cm to the right after impact, find the mechanical energy lost in the collision.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A bullet of mass 4 g moving with an initial speed 400 m/s is fired into...
A bullet of mass 4 g moving with an initial speed 400 m/s is fired into and passes through a block of mass 5 kg, as shown in the figure. The block, initially at rest on a frictionless, horizontal surface, is connected to a spring of force constant 538 N/m. If the block moves a distance 1.3 cm to the right after the bullet passed through it, find the speed v at which the bullet emerges from the block and...
A 12.0-g bullet is fired horizontally into a 116-g wooden block that is initially at rest...
A 12.0-g bullet is fired horizontally into a 116-g wooden block that is initially at rest on a frictionless horizontal surface and connected to a spring having spring constant 151 N/m. The bullet becomes embedded in the block. If the bullet-block system compresses the spring by a maximum of 81.0 cm, what was the speed of the bullet at impact with the block?
13. A 10.0-g bullet is fired into a stationary block of wood (m = 5.00 kg)...
13. A 10.0-g bullet is fired into a stationary block of wood (m = 5.00 kg) at the speed of 300 m/s, the relative motion of the bullet stops inside the block. Determine the speed of the bullet-plus-wood combination immediately after the collision.
A rifle bullet with mass 15.0 g strikes and embeds itself in a block of mass...
A rifle bullet with mass 15.0 g strikes and embeds itself in a block of mass 1.500 kg that rests on a frictionless, horizontal surface and is attached to a coil spring. The spring was relaxed at the beginning. The spring constant is 550 N/m. The initial velocity of the bullet was 700 m/s. The impact compresses the spring by x (see figure below). 1) Find the magnitude of the block's velocity (with the bullet stuck inside) after the impact...
A bullet of mass m = 8.00 g is fired into a block of mass M...
A bullet of mass m = 8.00 g is fired into a block of mass M = 180 g that is initially at rest at the edge of a table of height h = 1.00 m (see figure below). The bullet remains in the block, and after the impact the block lands d =  2.10 m from the bottom of the table. Determine the initial speed of the bullet. m/s
A 6.03-g bullet is fired horizontally at a speed of 662 m/s directly toward a 3.89-kg...
A 6.03-g bullet is fired horizontally at a speed of 662 m/s directly toward a 3.89-kg wooden block. The wooden block is sliding on a frictionless surface and is moving toward the bullet at a speed of 2.68 m/s. The bullet passes through the block and the block's speed is reduced to 1.98 m/s. With what speed does the bullet emerge from the other side of the block?
A bullet with mass m(lowercase m) is fired into a block of wood with mass M(uppercase...
A bullet with mass m(lowercase m) is fired into a block of wood with mass M(uppercase M), suspended like a pendulum, and makes a completely inelastic collision with it. After the impact of the bullet, the block swings up to a maximum height h. Given the values of h = 5.00 cm = 0.0500 m, m = 6.75 g = 0.00675 kg, and M = 2.50 kg, (a) What is the (initial) velocity v_x of the bullet in m/s? (b)...
a 10 g bullet is fired into a 2 kg block initially at rest at the...
a 10 g bullet is fired into a 2 kg block initially at rest at the edge of a frictionless table of height 1.00 m. the bullet remains in the block, and after impact the block lands 2.00 m from the bottom of the table. determine the initial speed of the bullet
A 5.14-g bullet is moving horizontally with a velocity of +342 m/s, where the sign +...
A 5.14-g bullet is moving horizontally with a velocity of +342 m/s, where the sign + indicates that it is moving to the right (see part a of the drawing). The bullet is approaching two blocks resting on a horizontal frictionless surface. Air resistance is negligible. The bullet passes completely through the first block (an inelastic collision) and embeds itself in the second one, as indicated in part b. Note that both blocks are moving after the collision with the...
A 7.81-g bullet is moving horizontally with a velocity of +363 m/s, where the sign +...
A 7.81-g bullet is moving horizontally with a velocity of +363 m/s, where the sign + indicates that it is moving to the right (see part a of the drawing). The bullet is approaching two blocks resting on a horizontal frictionless surface. Air resistance is negligible. The bullet passes completely through the first block (an inelastic collision) and embeds itself in the second one, as indicated in part b. Note that both blocks are moving after the collision with the...