Question

An Apollo spacecraft describes a circular orbit with a 2414 km radius around the moon with...

An Apollo spacecraft describes a circular orbit with a 2414 km radius around
the moon with a velocity of 5133 km/h. In order to transfer it to a smaller
circular orbit with a 1930 km radius, the spacecraft is first placed on an
elliptical path AB by reducing its velocity to 4827 km/h as it passes through A.
Determine (a) the velocity of the spacecraft as it approaches B on the elliptic
path, (b) the value to which its velocity must be reduced at B to insert it into the
smaller circular orbit and the change in velocity that results.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A spacecraft of mass 2 · 10^3 kg is in a circular orbit of radius R...
A spacecraft of mass 2 · 10^3 kg is in a circular orbit of radius R = 10^4 km around a planet. The speed of the spacecraft on the orbit is 20km/s. Determine the mass of the planet and the energy of the spacecraft. Submit your answer in the following form: • Give your numerical answer for the mass of the planet. • Give your numerical answer for the energy of the spacecraft.
A Titan IV rocket has put your spacecraft in a circular orbit around Earth at an...
A Titan IV rocket has put your spacecraft in a circular orbit around Earth at an altitude of 320 km. What is your orbital velocity? Give your answer in m/s.
On December 1, 2005, a spacecraft left a 180 km altitude circular orbit around Earth on...
On December 1, 2005, a spacecraft left a 180 km altitude circular orbit around Earth on a mission to Venus. It arrived at Venus 121 days later on April 1, 2006, entering a 300 km by 9000 km capture ellipse around the planet. Calculate the total delta v required for this mission.
Mercury has a radius of 2440 km. A satellite is in circular orbit around Mercury. It...
Mercury has a radius of 2440 km. A satellite is in circular orbit around Mercury. It travels at a distance of 124 km above the surface and its period of rotation is 1 hour 31.5 minutes. a) Estimate the Mass of Mercury. State which formula(s) you applied and why. b) Estimate Mercury's mean density. You can assume a spherical planet. c) Compare your answer to the mean density of Earth. Why is it larger/smaller?
A sattelite is rotatin in a circular orbit with radius r = 1000 km aroud earth....
A sattelite is rotatin in a circular orbit with radius r = 1000 km aroud earth. The mass of the sattelite is m = 1000 kg. The mass of earth is M = 6 x 10^24 kg. a) What is the velocity of the sattelite? b) The engine of the sattelite is turned on and it changes its orbit to a new orbit with radius r = 500 km. How much work (W=?) should the engine do for this change...
1). a). An asteroid is discovered in a nearly circular orbit around the Sun, with an...
1). a). An asteroid is discovered in a nearly circular orbit around the Sun, with an orbital radius that is 2.83 times Earth's. What is the asteroid's orbital period ?, its "year," in terms of Earth years? b). An artificial satellite is in a circular orbit ?=390.0 km above the surface of a planet of radius ?=3.65×103 km. The period of revolution of the satellite around the planet is ?=3.15 hours. What is the average density of the planet?
Spacecraft orbit Initial orbit radius (km) 7000 Comet properties semi major axis (Au) 1.5 eccentricity 0.2...
Spacecraft orbit Initial orbit radius (km) 7000 Comet properties semi major axis (Au) 1.5 eccentricity 0.2 inclination (deg) 10 argument of perihelion (deg) 60 Comet mass(kg) 3E16 Consider the requirement to transfer a satellite, initially in an elliptical orbit about the Earth that is to be to be placed in orbit about a Comet. You should note from the data that is provided to you that this target Comet orbit is neither circular nor a coplanar orbit with the initial...
The radius of the Earth’s orbit around the sun (assumed to be circular) is 1.50∙108 km,...
The radius of the Earth’s orbit around the sun (assumed to be circular) is 1.50∙108 km, and the Earth travels around this obit in 365 days. The mass of the Earth is 5.97∙1024 kg. magnitude of the orbital velocity of the Earth: 2.98.104 m/s acceleration of the earth toward the sun: 5.91.10-3 m/s2 a) What is the magnitude of centripetal force acting on the Earth? b) What is responsible for providing this centripetal force? c) Calculate the gravitational acceleration OF...
A spacecraft of 150 kg mass is in a circular orbit about the Earth at a...
A spacecraft of 150 kg mass is in a circular orbit about the Earth at a height h = 5RE. (a) What is the period of the spacecraft's orbit about the Earth? T = answer in hours (b) What is the spacecraft's kinetic energy? K = Units in J (c) Express the angular momentum L of the spacecraft about the center of the Earth in terms of its kinetic energy K. (Use the following as necessary: RE for the radius...
Given that the Sun moves in a circular orbit of radius 8.09 kpc around the center...
Given that the Sun moves in a circular orbit of radius 8.09 kpc around the center of the Milky Way, and its orbital speed is 216 km/sec, work out how long it takes the Sun to complete one orbit of the Galaxy. How many orbits has the Sun completed in the 4.5 billion years since it formed? ____ × 108 years _____ orbits