Question

A 0.026-kg bullet is accelerated from rest to a speed of 565 m/s in a 3.2-kg...

A 0.026-kg bullet is accelerated from rest to a speed of 565 m/s in a 3.2-kg rifle. The pain of the rifle’s kick is much worse if you hold the gun loosely a few centimeters from your shoulder rather than holding it tightly against your shoulder. For this problem, use a coordinate system in which the bullet is moving in the positive direction.

a. Calculate the recoil velocity of the rifle if it is held loosely away from the shoulder.

b. How much kinetic energy does the rifle gain?

c. What is the recoil velocity if the rifle is held tightly against the shoulder, making the effective mass 28.0 kg?

d. How much kinetic energy is transferred to the rifle-shoulder combination? The pain is related to the amount of kinetic energy, which is significantly less in this latter situation.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 10-g bullet leaves a rifle barrel with a velocity of 600 m/s to the east....
A 10-g bullet leaves a rifle barrel with a velocity of 600 m/s to the east. If the barrel is 1 m long, the bullet accelerates inside with constant acceleration and the gun has a mass of 4 kg, what is: a) the recoil velocity of the rifle? b) the force exerted on the bullet? c) the time during which the bullet was accelerated? d) the impulse supplied to the bullet?
A 0.50 m radius, 1.5 kg wheel is accelerated from rest at 3.00 rad/s2 for 8.00...
A 0.50 m radius, 1.5 kg wheel is accelerated from rest at 3.00 rad/s2 for 8.00 seconds. Find the following:        Given: a. The moment of inertia of the wheel. b. The torque acting on the wheel. c. The final angular velocity after the 8 seconds. d. The final rotational kinetic energy after the 8 seconds.
A 0.00600 kg bullet traveling horizontally with speed 1.00 103 m/s strikes a 21.4 kg door,...
A 0.00600 kg bullet traveling horizontally with speed 1.00 103 m/s strikes a 21.4 kg door, embedding itself 11.3 cm from the side opposite the hinges as shown in the figure below. The 1.00 m wide door is free to swing on its frictionless hinges. A door shown from above such that its hinge is on the top side of the figure with the door going down. A bullet is traveling horizontally to the right towards the door on the...
A 0.00400-kg bullet traveling horizontally with speed 1.00 103 m/s strikes a 20.0-kg door, embedding itself...
A 0.00400-kg bullet traveling horizontally with speed 1.00 103 m/s strikes a 20.0-kg door, embedding itself 10.9 cm from the side opposite the hinges as shown in the figure below. The 1.00-m wide door is free to swing on its frictionless hinges. (a) Before it hits the door, does the bullet have angular momentum relative the door's axis of rotation? Yes No (b) If so, evaluate this angular momentum. (If not, enter zero.) kg · m2/s If not, explain why...
A 0.00400-kg bullet traveling horizontally with speed 1.00 103 m/s strikes a 17.7-kg door, embedding itself...
A 0.00400-kg bullet traveling horizontally with speed 1.00 103 m/s strikes a 17.7-kg door, embedding itself 10.2 cm from the side opposite the hinges as shown in the figure below. The 1.00-m wide door is free to swing on its frictionless hinges. (a) Before it hits the door, does the bullet have angular momentum relative the door's axis of rotation? Yes No (b) If so, evaluate this angular momentum. (If not, enter zero.) kg · m2/s If not, explain why...
If a person of mass M simply moved forward with speed V, his kinetic energy would...
If a person of mass M simply moved forward with speed V, his kinetic energy would be 12MV2. However, in addition to possessing a forward motion, various parts of his body (such as the arms and legs) undergo rotation. Therefore, his total kinetic energy is the sum of the energy from his forward motion plus the rotational kinetic energy of his arms and legs. The purpose of this problem is to see how much this rotational motion contributes to the...
A 790-kg two-stage rocket is traveling at a speed of 6.90×103 m/s away from Earth when...
A 790-kg two-stage rocket is traveling at a speed of 6.90×103 m/s away from Earth when a predesigned explosion separates the rocket into two sections of equal mass that then move with a speed of 2.80×103 m/s relative to each other along the original line of motion.How much energy was supplied by the explosion? [Hint: What is the change in kinetic energy as a result of the explosion?]
A heavy grindstone (mass,50 kg, radius,0.4 m) is spun up with constant torque from rest to...
A heavy grindstone (mass,50 kg, radius,0.4 m) is spun up with constant torque from rest to a final angular velocity of 1 rev/sec. This is accomplished in 15 seconds. a)what is the rotational inertia of the grindstone? b)what is the final kinetic energy of the grindstone? c)what was the angular acceleration while spinning up? d)how much torque was required to spin up the grindstone? e)how much work did it take to spin up the grindstone? f)what power was required to...
A 780-kg two-stage rocket is traveling at a speed of 6.90×103 m/s away from Earth when...
A 780-kg two-stage rocket is traveling at a speed of 6.90×103 m/s away from Earth when a predesigned explosion separates the rocket into two sections of equal mass that then move with a speed of 2.50×103 m/s relative to each other along the original line of motion. a.)What is the speed of each section (relative to Earth) after the explosion? Express your answers using three significant figures separated by a comma. b.)What are the direction of each section (relative to...
1. A 25 kg skydiver has a speed of 20 m/s at an altitude of 350...
1. A 25 kg skydiver has a speed of 20 m/s at an altitude of 350 m above the ground. Determine the kinetic energy possessed by the skydiver. 2. If a cruise ship travels 150 km to the south and then 250 km to the west, what is the ship’s displacement from its starting point? 3. A train is accelerating at a rate of 5 m/s . If its initial velocity is 15 m/s, what is its speed after 10...