Question

A 5 µF, a 7 µF, and an unknown capacitor CX are connected in parallel between...

  1. A 5 µF, a 7 µF, and an unknown capacitor CX are connected in parallel between points a and b in a circuit. Draw a circuit diagram.

a. If the equivalent single capacitor has a capacitance of 24 µF, what is the value of CX

b. if the circuit is connected to a power source of 20 V across points a and b, what are the charges on each of capacitors and on the equivalent capacitor?

c. What is the voltage across each of these capacitors?

d. How much electrical energy is stored in each of the individual capacitors and the equivalent capacitor.

e. Instead of the capacitors in parallel if we connect them in series between the two points a and b then draw a circuit diagram for this configuration.

f. What will be the unknown capacitor value for CX if the equivalent capacitance for the circuit with the above three capacitors in series is 1.687 µF

g. What are charges and voltage differences across each of the capacitors when they are in parallel connection and across the equivalent capacitor for this configuration?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1.) A 2.00 µF and a 7.50 µF capacitor can be connected in series or parallel,...
1.) A 2.00 µF and a 7.50 µF capacitor can be connected in series or parallel, as can a 50.0 kΩ and a 100 kΩ resistor. Calculate the four RC time constants (in s) possible from connecting the resulting capacitance and resistance in series. resistors and capacitors in series: __________s resistors in series, capacitors in parallel: ____________s resistors in parallel, capacitors in series:________________s capacitors and resistors in parallel: ____________________s 2) A 1.16 MΩ voltmeter is placed in parallel with a...
A 1.0 µF capacitor is connected in parallel with a 1.6 µF capacitor, and the combination...
A 1.0 µF capacitor is connected in parallel with a 1.6 µF capacitor, and the combination is connected in series with a 6 µF capacitor. What is the equivalent capacitance of this combination?
A 2.00 µF and a 8.00 µF capacitor can be connected in series or parallel, as...
A 2.00 µF and a 8.00 µF capacitor can be connected in series or parallel, as can a 45.0 kΩ and a 100 kΩ resistor. Calculate the four RC time constants possible from connecting the resulting capacitance and resistance in series. resistors and capacitors in series resistors in series, capacitors in parallel resistors in parallel, capacitors in series capacitors and resistors in parallel
A 2.00 µF and a 4.50 µF capacitor can be connected in series or parallel, as...
A 2.00 µF and a 4.50 µF capacitor can be connected in series or parallel, as can a 45.0 kΩ and a 100 kΩ resistor. Calculate the four RC time constants (in s) possible from connecting the resulting capacitance and resistance in series. resistors and capacitors in series resistors in series, capacitors in parallel resistors in parallel, capacitors in series capacitors and resistors in parallel
A 2 µF and a 4 µF capacitor are connected in series with an 18V battery....
A 2 µF and a 4 µF capacitor are connected in series with an 18V battery. a) What are Q and V across each capacitor? b) Now take those same capacitors, unplug them from the battery carefully so as not to lose their charge, and connect them together in parallel instead. What are Q and V across each capacitor?
A 9.4 µF capacitor and a 23.4 µF capacitor are connected in series across the terminals...
A 9.4 µF capacitor and a 23.4 µF capacitor are connected in series across the terminals of a 6.00-V battery (a) What is the equivalence capacitance of this combination?   µF (b) Find the charge on each capacitor.   µC across the 9.4 µF capacitor.   µC across the 23.4 µF capacitor. (c) Find the potential difference across each capacitor.   V across the 9.4 µF capacitor.   V across the 23.4 µF capacitor. (d) Find the energy stored in each capacitor. µJ stored in...
A 6.0 µF capacitor and a 5.0 µF capacitor are connected in series across a 3.0...
A 6.0 µF capacitor and a 5.0 µF capacitor are connected in series across a 3.0 kV potential difference. The charged capacitors are then disconnected from the source and connected to each other with terminals of like sign together. Find the charge on each capacitor (in mC) and the voltage across each capacitor (in V).
Three capacitors having capacitances of 8.0 µF, 8.2 µF, and 4.3 µF are connected in series...
Three capacitors having capacitances of 8.0 µF, 8.2 µF, and 4.3 µF are connected in series across a 36-V potential difference. (A) What is the charge on the 4.3μF capacitor? ( Express your answer using two significant figures ) (B) What is the total energy stored in all three capacitors? (Express your answer using two significant figures) (C) The capacitors are disconnected from the potential difference without allowing them to discharge. They are then reconnected in parallel with each other,...
Choose true or false for each statement regarding a parallel plate capacitor.. true false  The voltage of...
Choose true or false for each statement regarding a parallel plate capacitor.. true false  The voltage of a connected charged capacitor decreases when the plates are brought closer together. true false  The capacitance depends on the material between the plates. true false  The voltage of a disconnected charged capacitor decreases when the plate area is increased. Choose true or false for each statement regarding capacitors in a circuit. true false  If you connect two different capacitors in parallel in a circuit, then the voltage...
A 1.50 µF capacitor and a 6.75 µF capacitor are connected in series across a 2.50...
A 1.50 µF capacitor and a 6.75 µF capacitor are connected in series across a 2.50 V battery. How much charge (in µC) is stored on each capacitor? How much charge is stored on each capacitor if they are in parallel with the battery? Show work please