Question

a rectangular coil of dimension 30cm x 40 cm has a resistance of 5 ohms and...

a rectangular coil of dimension 30cm x 40 cm has a resistance of 5 ohms and lies in the plane of the paper. a magnetic field of magnitude 5 tesla is perpendicular to the plane of coil and direction toward you. within 10.5 ms, the coil is changed into a circular shape.

a) what is the direction and magnitude of the current induced in the coil?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A circular coil of radius 4.0 cm, resistance 0.30 Ω, and 100 turns is placed in...
A circular coil of radius 4.0 cm, resistance 0.30 Ω, and 100 turns is placed in a uniform magnetic field at an angle of 30° with the plane of the coil. The magnitude of the field changes with time according to ?(?)=20?^(−0.3?) (in Tesla, t is time in seconds). What is the value of the current induced in the coil at the time t = 2.0 s?
A 22-turn circular coil of radius 5.00 cm and resistance 1.00 ? is placed in a...
A 22-turn circular coil of radius 5.00 cm and resistance 1.00 ? is placed in a magnetic field directed perpendicular to the plane of the coil. The magnitude of the magnetic field varies in time according to the expression B = 0.010 0t + 0.040 0t2, where B is in teslas and t is in seconds. Calculate the induced emf in the coil at t = 5.40 s. mV
A 29-turn circular coil of radius 3.40 cm and resistance 1.00 Ω is placed in a...
A 29-turn circular coil of radius 3.40 cm and resistance 1.00 Ω is placed in a magnetic field directed perpendicular to the plane of the coil. The magnitude of the magnetic field varies in time according to the expression B = 0.010 0t + 0.040 0t2, where B is in teslas and t is in seconds. Calculate the induced emf in the coil at t = 4.60 s.
2. A circular coil with 30 turns of wire has a diameter of 2.00 cm. The...
2. A circular coil with 30 turns of wire has a diameter of 2.00 cm. The total resistance of the coil is 0.350 Ω. An applied uniform magnetic field is directed upward, perpendicular to the plane of the coil. a) If the magnetic field changes linearly from 0.000 T to 0.800 T in 0.500 s, what is the induced emf in the coil while the field is changing? b) What is the magnitude and direction (CW or CCW when looked...
A 50.0 cm ✕ 35.0 cm rectangular coil of 20 turns lies in the horizontal (x-z)...
A 50.0 cm ✕ 35.0 cm rectangular coil of 20 turns lies in the horizontal (x-z) plane with its 50.0 cm side along the +x axis and its 35.0 cm side along the +z axis. The coil is in the region of a magnetic field B = (2.75 ✕ 10−2 T/m · s)ztĵ − (3.65 ✕ 10−2 T/m)x. (a) Determine the magnitude of the induced emf. mV (b) What is the direction of the induced emf in the coil as...
A circular loop in the plane of the paper lies in a 0.75 T magnetic field...
A circular loop in the plane of the paper lies in a 0.75 T magnetic field pointing into the paper. The loop’s diameter is changed from 20.0 cm to 6.0 cm in 0.50 s. Determine the direction of the induced current and justify your answer. Determine the magnitude of the average induced emf. If the coil resistance is 2.5 Ω, what is the average induced current?
A circular coil of 312 winds of wire (radius = 7.0 cm, resistance = 7.4 Ω)...
A circular coil of 312 winds of wire (radius = 7.0 cm, resistance = 7.4 Ω) is placed in a uniform magnetic field that is perpendicular to the plane of the loop. The magnitude of the field changes with time according to ? = 90sin(7?) mT, where ? is measured in seconds. Determine the magnitude of the current induced in the loop at ?=?/7 s.
A 37-turn circular coil of radius 4.60 cm and resistance 1.00 Ω is placed in a magnetic field directed perpendicular to...
A 37-turn circular coil of radius 4.60 cm and resistance 1.00 Ω is placed in a magnetic field directed perpendicular to the plane of the coil. The magnitude of the magnetic field varies in time according to the expression B = 0.010 0t + 0.040 0t2, where B is in teslas and t is in seconds. Calculate the induced emf in the coil at t = 4.20 s.
A circular loop in the plane of the paper lies in a 0.65 T magnetic field...
A circular loop in the plane of the paper lies in a 0.65 T magnetic field pointing into the paper. If the loop's diameter changes from 19.4 cm to 7.2 cm in 0.15 s , what is the direction of the induced current? What is the magnitude of the average induced emf? If the coil resistance is 3.3 ? , what is the average induced current?
A closely wound rectangular coil of 95.0 turns has dimensions of 22.0 cm by 49.0 cm....
A closely wound rectangular coil of 95.0 turns has dimensions of 22.0 cm by 49.0 cm. The plane of the coil is rotated from a position where it makes an angle of 35.0 ∘ with a magnetic field of 1.20 T to a position perpendicular to the field. The rotation takes 0.120 s. What is the average emf induced in the coil?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT