Question

You are the science officer on a visit to a distant solar system. Prior to landing...

You are the science officer on a visit to a distant solar system. Prior to landing on a planet you measure its diameter to be 1.8 × 107 m and its rotation period to be 22.3 hours. You have previously determined that the planet orbits 7.5 × 1011 m from its star with a period of 402 earth days. Once on the surface you find that the acceleration due to gravity is 94.8 m/s2. What are the mass of (a) the planet and (b) the star? (G = 6.67 × 10-11 N · m2/kg2)

(a) 2.1 × 1026 kg, (b) 1.2 × 1032 kg(a) 1.1 × 1026 kg, (b) 2.1 × 1032 kg(a) 2.1 × 1026 kg, (b) 2.1 × 1032 kg(a) 1.1 × 1026 kg, (b) 1.2 × 1032 kg

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
You are the science officer on a visit to a distant solar system. Prior to landing...
You are the science officer on a visit to a distant solar system. Prior to landing on a planet you measure its diameter to be 1.8 × 107 m and its rotation period to be 22.3 hours. You have previously determined that the planet orbits 5.8 × 1011 m from its star with a period of 402 earth days. Once on the surface you find that the acceleration due to gravity is 79.1 m/s2. What are the mass of (a)...
You are the science officer on a visit to a distant solar system. Prior to landing...
You are the science officer on a visit to a distant solar system. Prior to landing on a planet you measure its diameter to be 1.8×107m and its rotation period to be 22.3 hours . You have previously determined that the planet orbits 2.2×1011m from its star with a period of 382earth days. Once on the surface you find that the free-fall acceleration is 12.2m/s2. a) What is the mass of the planet? b)What is the mass of the star?
You are the science officer on a visit to a distant solar system. Prior to landing...
You are the science officer on a visit to a distant solar system. Prior to landing on a planet you measure its diameter to be 17000 km and its rotation period to be 22.8 hours. You have previously determined that the planet orbits 240000000 km from its star with a period of 500 Earth days. Once on the surface you find that the free-fall acceleration is 11.8 m/s22. What is the mass of the planet? What is the mass of...
A new extrasolar planet (outside our solar system) has been discovered. This planet orbits a star...
A new extrasolar planet (outside our solar system) has been discovered. This planet orbits a star of mass 1.05×1031 kg with a period of 6.52 years . It is also known that the planet has an eccentricity of 0.674. Part A: What is the average velocity of the planet in its orbit? in m/s Part B: What is the distance of closest approach to its parent start (perihelion)? d.perihelion in m Part C: What is the farthest distance the planet...
1. Planet X belongs to the planetary system of a distant star. The radius of Planet...
1. Planet X belongs to the planetary system of a distant star. The radius of Planet X was determined through direct observation by the exploration ship to be Rx = 7.22X103 km. An exploration team sent to the surface measured the gravitational acceleration to be gx = 10.6 m/s2. (a) Use the information given about Planet X to find its mass, Mx. (Explain every step) (b) The exploration ship orbits Planet X at an altitude of 1.70X10^3 km. What is...
Earth II is a planet in a distant solar system which is earth-like, but a little...
Earth II is a planet in a distant solar system which is earth-like, but a little smaller than our earth. In the distance future, Earth II has been settled by bold travelers from our home planet. Very far from Earth II (effectively at R=∞), a spacecraft has run out of fuel and its kinetic energy is zero. If only the gravitational force of Earth II were to act on the spacecraft (i.e., neglect the forces from the sun and other...
The mass of the Sun M = 2.0×1030 kg, and G = 6.67×10-11 Nm2 /kg2 a)....
The mass of the Sun M = 2.0×1030 kg, and G = 6.67×10-11 Nm2 /kg2 a). A spaceship of mass m = 7.5×104 kg is on a circular orbit of radius r1 = 2.5×1011 m around the Sun. The captain of that spaceship decides to increase the radius of his orbit to r2 = 4.0×1011 m. What is the minimum amount of energy he has to expand using his engines to move to this higher orbit? [Assume that the ship...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT