Question

An object is moving at a velocity of 225 m/s, emitting a sound at 343 Hz....

An object is moving at a velocity of 225 m/s, emitting a sound at 343 Hz. The observer is stationary. What is the observed frequency as the source approaches the observer? What is the observed frequency after the source passes the observer?

Homework Answers

Answer #1

Doppler Equation for stationary observer is given by,

where,

f is the actual frequency = 343 Hz

v is the velocity of sound in air = 343 m/s

v_s = velocity of source : When approaching v_s = - 225 m/s & When approaching v_s = + 225 m/s

When object is approaching : Obsereved Frequency   

When object is passing away : Obsereved Frequency   

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The siren on an ambulance is emitting a sound whose frequency is 2550 Hz. The speed...
The siren on an ambulance is emitting a sound whose frequency is 2550 Hz. The speed of sound is 343 m/s. (a) If the ambulance is stationary and you (the "observer") are sitting in a parked car, what are the wavelength and the frequency of the sound you hear? (b) Suppose that the ambulance is moving toward you at a speed of 26.2 m/s. Determine the wavelength and the frequency of the sound you hear. (c) If the ambulance is...
A truck moving at 36 m/s passes a police car moving at 45 m/s in the...
A truck moving at 36 m/s passes a police car moving at 45 m/s in the opposite direction. The frequency of the sound emitted by the siren on the police car is 500 Hz and the speed of sound in air is 343 m/s. (a) What is the frequency heard by an observer in the truck as the police car approaches the truck? (b) What is the frequency heard by an observer in the truck after the police car passes...
The siren on an ambulance is emitting a sound whose frequency is 2450 Hz. The speed...
The siren on an ambulance is emitting a sound whose frequency is 2450 Hz. The speed of sound is 343 m/s. (a) If the ambulance is stationary and you (the "observer") are sitting in a parked car, what are the wavelength and the frequency of the sound you hear? (b) Suppose that the ambulance is moving toward you at a speed of 26.8 m/s. Determine the wavelength and the frequency of the sound you hear. (c) If the ambulance is...
An ambulance with a 200-Hz siren is moving at 30.0 m/s. Take the speed of sound...
An ambulance with a 200-Hz siren is moving at 30.0 m/s. Take the speed of sound to be 340 m/s. a) What frequencies are observed by a stationary person standing on the sidewalk as the ambulance approaches and after it passes? b) Is this Doppler shift real or just a sensory illusion?
A sound source with a frequency of 1500 Hz moves at 40 m / s towards...
A sound source with a frequency of 1500 Hz moves at 40 m / s towards a wall that approaches the source at 50 m / s. If the speed of sound is 343 m / s, determine the reflector frequency that the source of the reflected wave detects.
The frequency will sound different if we hear a sound source moving relative to us. This...
The frequency will sound different if we hear a sound source moving relative to us. This phenomenon is called the Doppler Effect in Physics. An ambulance sounds a siren at 1515 Hz and passes a cyclist moving at 2.12 m / s. After the ambulance passed, the cyclist heard a siren sound at a frequency of 1501 Hz. The speed of sound in the air is about 343 m / s. What is the speed (speed) of the ambulance in...
A sound wave of frequency f=300Hz produced by a moving source 40m/s is observed by a...
A sound wave of frequency f=300Hz produced by a moving source 40m/s is observed by a stationary observer. The speed of sound in ambient air is 345 m/s. As the source moves toward the observer, how far does the source travel between subsequent wave pulses? What is the apparent wavelength of the sound wave as perceived by the observer? What is the frequency of sound perceived by the observer? Note, when the source is in motion, the speed of the...
(a) A fire truck with the 500 Hz siren on approaches an observer at 50 m/s,...
(a) A fire truck with the 500 Hz siren on approaches an observer at 50 m/s, who is at rest. What frequency would observer detect? (b) A fire truck with the 500 Hz siren on is at rest. An observer approaches the fire truck with the speed of 50 m/s. What frequency would the observer detect? (The speed of sound is 343 m/s.)
A fire truck emits an 1080 Hz siren. As the truck approaches an observer on the...
A fire truck emits an 1080 Hz siren. As the truck approaches an observer on the sidewalk, he perceives the frequency of the siren to be 1150 Hz. Approximately what frequency does he hear after the truck passes and is moving away? Assume the truck's velocity remains constant, and that the velocity of sound in air is 340 m/s.
A train is moving away from an observer at 31.0 m/s blows a 305 Hz whistle....
A train is moving away from an observer at 31.0 m/s blows a 305 Hz whistle. What frequency is detected by the stationary observer? Assume standard pressure and 20°C for the speed of sound.