Question

A perfectly insulated, sealed chamber has a fixed volume of 24.2 m3,24.2 m3, and is filled...

A perfectly insulated, sealed chamber has a fixed volume of 24.2 m3,24.2 m3, and is filled with an ideal diatomic gas. This diatomic gas has a temperature of 33∘C33∘C and a pressure of 1.26×105 Pa.1.26×105 Pa. A 1.00 kg1.00 kg block of ice at its melting point is placed within the chamber, after which the chamber is immediately sealed again.

The latent heat of fusion ?fLf of water is 3.34×105 J/kg3.34×105 J/kg and the specific heat ?c of water is 4186 J/kg·K.4186 J/kg·K.

What is the equilibrium temperature ?eq?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
What mass of steam at 100°C must be mixed with 216 g of ice at its...
What mass of steam at 100°C must be mixed with 216 g of ice at its melting point, in a thermally insulated container, to produce liquid water at 65.0°C? The specific heat of water is 4186 J/kg·K. The latent heat of fusion is 333 kJ/kg, and the latent heat of vaporization is 2256 kJ/kg.
What mass of steam at 100°C must be mixed with 162 g of ice at its...
What mass of steam at 100°C must be mixed with 162 g of ice at its melting point, in a thermally insulated container, to produce liquid water at 71.0°C? The specific heat of water is 4186 J/kg·K. The latent heat of fusion is 333 kJ/kg, and the latent heat of vaporization is 2256 kJ/kg.
What mass of steam at 100°C must be mixed with 260 g of ice at its...
What mass of steam at 100°C must be mixed with 260 g of ice at its melting point, in a thermally insulated container, to produce liquid water at 73.0°C? The specific heat of water is 4186 J/kg·K. The latent heat of fusion is 333 kJ/kg, and the latent heat of vaporization is 2256 kJ/kg
A sealed 51 m3 tank is filled with 9000 moles of ideal oxygen gas (diatomic) at...
A sealed 51 m3 tank is filled with 9000 moles of ideal oxygen gas (diatomic) at an initial temperature of 270 K. The gas is heated to a final temperature of 330 K. The atomic mass of oxygen is 16.0 g/mol. The mass density of the oxygen gas, in SI units, is closest to 11 4.2 5.6 2.8 7.1
Chapter 18, Problem 041 (a) Two 58 g ice cubes are dropped into 410 g of...
Chapter 18, Problem 041 (a) Two 58 g ice cubes are dropped into 410 g of water in a thermally insulated container. If the water is initially at 20°C, and the ice comes directly from a freezer at -11°C, what is the final temperature at thermal equilibrium? (b) What is the final temperature if only one ice cube is used? The specific heat of water is 4186 J/kg·K. The specific heat of ice is 2220 J/kg·K. The latent heat of...
A well-insulated 0.2kg copper bowl contains 0.10kg of ice, both at −10◦ C. A very hot...
A well-insulated 0.2kg copper bowl contains 0.10kg of ice, both at −10◦ C. A very hot 0.35kg copper cylinder is dropped into it and the lid quickly closed. The final temperature of the system is 100◦C, with 5g of steam in the container. (a) How much heat was transferred to the water (in all phases); (b) How much to the bowl? (c) What must have been the original temperature of the cylinder? The specific heat of copper is 386 J/kg·K....
An insulated beaker with negligible mass contains liquid water with a mass of 0.345 kg and...
An insulated beaker with negligible mass contains liquid water with a mass of 0.345 kg and a temperature of 76.5 ∘C . How much ice at a temperature of -19.9 ∘C must be dropped into the water so that the final temperature of the system will be 27.0 ∘C ? Take the specific heat of liquid water to be 4190 J/kg⋅K , the specific heat of ice to be 2100 J/kg⋅K , and the heat of fusion for water to...
An insulated beaker with negligible mass contains liquid water with a mass of 0.235 kg and...
An insulated beaker with negligible mass contains liquid water with a mass of 0.235 kg and a temperature of 68.6 ∘C . How much ice at a temperature of -20.0 ∘C must be dropped into the water so that the final temperature of the system will be 25.0 ∘C ? Take the specific heat of liquid water to be 4190 J/kg⋅K , the specific heat of ice to be 2100 J/kg⋅K , and the heat of fusion for water to...
An insulated beaker with negligible mass contains liquid water with a mass of 0.235 kg and...
An insulated beaker with negligible mass contains liquid water with a mass of 0.235 kg and a temperature of 66.5 ∘C . How much ice at a temperature of -18.4 ∘C must be dropped into the water so that the final temperature of the system will be 20.0 ∘C ? Take the specific heat of liquid water to be 4190 J/kg⋅K , the specific heat of ice to be 2100 J/kg⋅K , and the heat of fusion for water to...
An insulated beaker with negligible mass contains liquid water with a mass of 0.310 kg and...
An insulated beaker with negligible mass contains liquid water with a mass of 0.310 kg and a temperature of 74.1 ?C . How much ice at a temperature of -10.2 ?C must be dropped into the water so that the final temperature of the system will be 37.0 ?C ? Take the specific heat of liquid water to be 4190 J/kg?K , the specific heat of ice to be 2100 J/kg?K , and the heat of fusion for water to...