Question

A 33.0 kgkg crate is initially moving with a velocity that has magnitude 3.53 m/sm/s in...

A 33.0 kgkg crate is initially moving with a velocity that has magnitude 3.53 m/sm/s in a direction 37.0 ∘∘ west of north.

How much work must be done on the crate to change its velocity to 5.96 m/sm/s in a direction 63.0 ∘∘ south of east?

Express your answer to three significant figures and include the appropriate units.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 0.060-kgkg tennis ball, moving with a speed of 5.24 m/sm/s , has a head-on collision...
A 0.060-kgkg tennis ball, moving with a speed of 5.24 m/sm/s , has a head-on collision with a 0.085-kgkg ball initially moving in the same direction at a speed of 3.66 m/sm/s . what is the collision is perfectly elastic.
Problem 7.26 A 0.250-kg ice puck, moving east with a speed of 5.62 m/s , has...
Problem 7.26 A 0.250-kg ice puck, moving east with a speed of 5.62 m/s , has a head-on collision with a 0.900-kg puck initially at rest. Assume that the collision is perfectly elastic. Part A What is the speed of the 0.250-kg puck after the collision? Express your answer to three significant figures and include the appropriate units. v1 = Part B What is the direction of the velocity of the 0.250-kg puck after the collision? What is the direction...
A small, 200 gg cart is moving at 1.90 m/sm/s on a frictionless track when it...
A small, 200 gg cart is moving at 1.90 m/sm/s on a frictionless track when it collides with a larger, 5.00 kgkg cart at rest. After the collision, the small cart recoils at 0.810 m/sm/s . What is the speed of the large cart after the collision? Express your answer with the appropriate units. A 2.2 kgkg block slides along a frictionless surface at 1.4 m/sm/s . A second block, sliding at a faster 4.4 m/sm/s , collides with the...
A 0.450-kg ice puck, moving east with a speed of 5.46 m/s , has a head-on...
A 0.450-kg ice puck, moving east with a speed of 5.46 m/s , has a head-on collision with a 0.990-kg puck initially at rest. Assume that the collision is perfectly elastic. Part A What is the speed of the 0.450-kg puck after the collision? Express your answer to three significant figures and include the appropriate units. Part B What is the direction of the velocity of the 0.450-kg puck after the collision? Part C What is the speed of the...
A mass mAmAm_A = 1.8 kgkg , moving with velocity v⃗ A=(4.0iˆ+4.4jˆ−1.2kˆ)m/sv→A=(4.0i^+4.4j^−1.2k^)m/s, collides with mass mBmBm_B...
A mass mAmAm_A = 1.8 kgkg , moving with velocity v⃗ A=(4.0iˆ+4.4jˆ−1.2kˆ)m/sv→A=(4.0i^+4.4j^−1.2k^)m/s, collides with mass mBmBm_B = 3.8 kgkg , which is initially at rest. Immediately after the collision, mass mAmAm_A = 1.8 kgkg is observed traveling at velocity v⃗ ′A=(−2.4iˆ+3.0kˆ)m/sv→′A=(−2.4i^+3.0k^)m/s. Find the velocity of mass mBmB after the collision. Assume no outside force acts on the two masses during the collision. Enter the x, y, and z components of the velocity separated by commas. Express your answer to two...
An object with mass mAmA = 1.6 kgkg , moving with velocity v⃗ A=(4.2iˆ+5.6jˆ−3.0kˆ)m/sv→A=(4.2i^+5.6j^−3.0k^)m/s, collides with...
An object with mass mAmA = 1.6 kgkg , moving with velocity v⃗ A=(4.2iˆ+5.6jˆ−3.0kˆ)m/sv→A=(4.2i^+5.6j^−3.0k^)m/s, collides with another object of mass mBmB = 4.2 kgkg , which is initially at rest. Immediately after the collision, the object with mass mAmA = 1.6 kgkg is observed traveling at velocity v⃗ ′A=(−2.0iˆ+3.0kˆ)m/sv→′A=(−2.0i^+3.0k^)m/s.   Find the velocity of the object with mass mBmB after the collision. Assume no outside force acts on the two masses during the collision. Enter the xx, yy, and zz components of...
A 120 gg ball moving to the right at 4.2 m/sm/s catches up and collides with...
A 120 gg ball moving to the right at 4.2 m/sm/s catches up and collides with a 450 gg ball that is moving to the right at 1.2 m/sm/s Part A: If the collision is perfectly elastic, what is the speed of the 120 gg ball after the collision? Express your answer to two significant figures and include the appropriate units. Part B : If the collision is perfectly elastic, what is the direction of motion of the 120 gg...
You ride in a boat on a river flowing at 1.8 m/sm/s (in the negative y...
You ride in a boat on a river flowing at 1.8 m/sm/s (in the negative y direction). Suppose you would like the boat to move directly across the river (in the positive x direction) with a speed of 5.3 m/sm/s. Express your answer to two significant figures and include appropriate units. A.) What is the corresponding speed of the boat's velocity relative to the water? B.) What is the corresponding direction of the boat's velocity relative to the water (i.e....
A 2.20 kgkg box is moving to the right with speed 8.50 m/sm/s on a horizontal,...
A 2.20 kgkg box is moving to the right with speed 8.50 m/sm/s on a horizontal, frictionless surface. At ttt = 0 a horizontal force is applied to the box. The force is directed to the left and has magnitude F(t)=(F(t)=( 6.00 N/s2N/s2 )t2
A 750 kg car is stalled on an icy road during a snowstorm. A 1000 kg...
A 750 kg car is stalled on an icy road during a snowstorm. A 1000 kg car traveling eastbound at 14 m/sm/s collides with the rear of the stalled car. After being hit, the 750 kg car slides on the ice at 4 m/sm/s in a direction 30∘ north of east. Part A What is the magnitude of the velocity of the 1000 kg car after the collision? Express your answer in meters per seconds to two significant figures. Part...