Question

The maximum kinetic energy of photoelectrons is 3.10 eVeV . When the wavelength of the light...

The maximum kinetic energy of photoelectrons is 3.10 eVeV . When the wavelength of the light is increased by 50%, the maximum energy decreases to 1.10 eVeV .

Part A

What is the work function of the cathode?

Part B

What is the initial wavelength ?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Monochromatic light from laser shines onto an aluminium surface and produces photoelectrons with maximum kinetic energy...
Monochromatic light from laser shines onto an aluminium surface and produces photoelectrons with maximum kinetic energy KEmax = 1.02 eV. What is the wavelength of the laser light? What is the maximum velocity of the photoelectrons? Assume a work function of 4.06 eV for aluminium.
When ultraviolet light with a wavelength of 400 nmnm falls on a certain metal surface, the...
When ultraviolet light with a wavelength of 400 nmnm falls on a certain metal surface, the maximum kinetic energy of the emitted photoelectrons is 1.10 eVeV . What is the maximum kinetic energy K0K0K_0 of the photoelectrons when light of wavelength 270 nmnm falls on the same surface? Use hhh = 6.63×10−34 J⋅sJ⋅s for Planck's constant and ccc = 3.00×108 m/sm/s for the speed of light and express your answer in electron volts.
When ultraviolet light with a wavelength of 400 nmfalls on a certain metal surface, the maximum...
When ultraviolet light with a wavelength of 400 nmfalls on a certain metal surface, the maximum kinetic energy of the emitted photoelectrons is 1.10 eV . What is the maximum kinetic energy K0 of the photoelectrons when light of wavelength 350 nm falls on the same surface? Use h = 6.63×10?34 J?s for Planck's constant and c = 3.00×108 m/s for the speed of light and express your answer in electron volts.
1. Light of wavelength 401 nm incident on a certain metal produces photoelectrons with a maximum...
1. Light of wavelength 401 nm incident on a certain metal produces photoelectrons with a maximum kinetic energy of 1.78 eV. What is the maximum wavelength of light capable of producing photoelectrons for this metal? 2. Electrons in an electron microscope have been accelerated through a potential difference of 1250 V. How large is their de Brogile wavelength?
You illuminate a metal with light of wavelength 590 nm and find that the photoelectrons have...
You illuminate a metal with light of wavelength 590 nm and find that the photoelectrons have a maximum kinetic energy of 0.70 eV. You then illuminate the same metal with light of another wavelength and find a maximum kinetic energy of 1.9 eV for the photoelectrons. What is the second wavelength, in nanometers?
When ultraviolet light with a wavelength of 400 nm falls on a certain metal surface, the...
When ultraviolet light with a wavelength of 400 nm falls on a certain metal surface, the maximum kinetic energy of the emitted photoelectrons is 1.10 eV . What is the maximum kinetic energy K0 of the photoelectrons when light of wavelength 330 nm falls on the same surface? Use h = 6.63×10?34J?s for Planck's constant and c = 3.00×108m/s for the speed of light and express your answer in electron volts.
When monochromatic light of an unknown wavelength falls on a sample of silver, a minimum potential...
When monochromatic light of an unknown wavelength falls on a sample of silver, a minimum potential of 2.50 V is required to stop all of the ejected photoelectrons. Determine the (a) maximum kinetic energy and (b) maximum speed of the ejected photoelectrons. (c) Determine the wavelength in nm of the incident light. (The work function for silver is 4.73 eV.)
When monochromatic light of an unknown wavelength falls on a sample of silver, a minimum potential...
When monochromatic light of an unknown wavelength falls on a sample of silver, a minimum potential of 2.50 V is required to stop all of the ejected photoelectrons. Determine the (a) maximum kinetic energy and (b) maximum speed of the ejected photoelectrons. (c) Determine the wavelength in nm of the incident light. (The work function for silver is 4.73 eV.)
When ultraviolet light with a wavelength of 400 nm falls on a certain metal surface, the...
When ultraviolet light with a wavelength of 400 nm falls on a certain metal surface, the maximum kinetic energy of the emitted photoelectrons is 1.10 eV . What is the maximum kinetic energy K_0 of the photoelectrons when light of wavelength 340 nm falls on the same surface? Use h = 6.63×10−34 J⋅s for Planck's constant and c = 3.00×108 m/s for the speed of light and express your answer in electron volts. View Available Hint(s) K_0 =    eV
Photoelectrons are observed when a metal surface is illuminated by light with a wavelength 437 nm....
Photoelectrons are observed when a metal surface is illuminated by light with a wavelength 437 nm. The stopping potential for the photoelectrons in this experiment is 1.67V. a. What is the work function of the metal, in eV? b. What type of metal is used in this experiment? c. What is the maximum speed of the ejected electrons?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT