Question

A playground ride consists of a disk of mass M = 59 kg and radius R...

A playground ride consists of a disk of mass M = 59 kg and radius R = 1.9 m mounted on a low-friction axle. A child of mass m = 18 kg runs at speed v = 2.2 m/s on a line tangential to the disk and jumps onto the outer edge of the disk.

(b) Relative to the axle, what was the magnitude of the angular momentum of the child before the collision?
L|C| =   
(c) Relative to the axle, what was the angular momentum of the system of child plus disk just after the collision?
L|C| =  
(d) If the disk was initially at rest, now how fast is it rotating? That is, what is its angular speed? (The moment of inertia of a uniform disk is ½MR2.)
w =  
(e) How long does it take for the disk to go around once?


Time to go around once =  

MOMENTUM
(g) What was the speed of the child just after the collision?
v =
(h) What was the speed of the center of mass of the disk just after the collision?
vcm =  
(i) What was the magnitude of the linear momentum of the disk just after the collision?
|p| =  
(j) Calculate the change in linear momentum of the system consisting of the child plus the disk (but not including the axle), from just before to just after impact, due to the impulse applied by the axle. Take the x axis to be in the direction of the initial velocity of the child.
px = px,f - px,i =  

ANGULAR MOMENTUM
(k) The child on the disk walks inward on the disk and ends up standing at a new location a distance R/2 = 0.95 m from the axle. Now what is the angular speed? (It helps to do this analysis algebraically and plug in numbers at the end.)
w =  

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A playground ride consists of a disk of mass M = 43 kg and radius R...
A playground ride consists of a disk of mass M = 43 kg and radius R = 2.2 m mounted on a low-friction axle. A child of mass m = 29 kg runs at speed v = 2.1 m/s on a line tangential to the disk and jumps onto the outer edge of the disk. a) Calculate the change in linear momentum of the system consisting of the child plus the disk (but not including the axle), from just before...
A playground ride consists of a disk of mass M=41 kg and radius R=1.6 m mounted...
A playground ride consists of a disk of mass M=41 kg and radius R=1.6 m mounted on a low-friction axle (see figure below). A child of mass m=24 kg runs at speed v=2.5 m/s on a line tangential to the disk and jumps onto the outer edge of the disk. (b) What is the change in the kinetic energy of the child plus the disk? Where has most of this kinetic energy gone? (d) Calculate the change in linear momentum...
A uniform disk of mass M and radius R is initially rotating freely about its central...
A uniform disk of mass M and radius R is initially rotating freely about its central axis with an angular speed of ω, and a piece of clay of mass m is thrown toward the rim of the disk with a velocity v, tangent to the rim of the disk as shown. The clay sticks to the rim of the disk, and the disk stops rotating. 33. What is the magnitude of the total angular momentum of the clay-disk system...
A merry-goround (disk of mass m = 200 kg, radius R = 1.6m) is rotating clockwise...
A merry-goround (disk of mass m = 200 kg, radius R = 1.6m) is rotating clockwise at a an angular speed of w = 0.5 rad s . A kid of mass m = 50kg is riding on the edge of the merry-go-round. At a particular point in time, the kid jumps off the merry-go-round at a speed v = 5.0 m/s relative to the ground, at an angle of 53 degrees below the x-axis. Part 1: What is the...
a solid disk of mass M and radius R is rotating on the vertical axle with...
a solid disk of mass M and radius R is rotating on the vertical axle with angular speed. another disk of mass M/2 and radius R initially not rotating falls coaxially on the disk and sticks. the rotational velicity of this system after collision is
A merry-go-round with a a radius of R = 1.75 m and moment of inertia I...
A merry-go-round with a a radius of R = 1.75 m and moment of inertia I = 182 kg-m2 is spinning with an initial angular speed of ω = 1.4 rad/s in the counter clockwise direection when viewed from above. A person with mass m = 71 kg and velocity v = 4.4 m/s runs on a path tangent to the merry-go-round. Once at the merry-go-round the person jumps on and holds on to the rim of the merry-go-round. 1)What...
Merry Go Round A merry-go-round with a radius of R = 1.80 m and moment of...
Merry Go Round A merry-go-round with a radius of R = 1.80 m and moment of inertia I = 201 kg-m2 spinning with an initial angular speed of ω = 1.5 rad/s in the counter clockwise direction when viewed from above. A person with mass m = 55 kg and velocity v = 4.5 m/s runs on a path tangent to the merry-go-round. Once at the merry-go-round the person jumps on and holds on to the rim of the merry-go-round....
A merry-go-round with a a radius of R = 1.75 m and moment of inertia I...
A merry-go-round with a a radius of R = 1.75 m and moment of inertia I = 182 kg-m2 is spinning with an initial angular speed of ω = 1.4 rad/s in the counter clockwise direction when viewed from above. A person with mass m = 71 kg and velocity v = 4.4 m/s runs on a path tangent to the merry-go-round. Once at the merry-go-round the person jumps on and holds on to the rim of the merry-go-round. 3)...
A merry-go-round with a a radius of R = 1.84 m and moment of inertia I...
A merry-go-round with a a radius of R = 1.84 m and moment of inertia I = 186 kg-m2 is spinning with an initial angular speed of ω = 1.55 rad/s in the counter clockwise direection when viewed from above. A person with mass m = 51 kg and velocity v = 5 m/s runs on a path tangent to the merry-go-round. Once at the merry-go-round the person jumps on and holds on to the rim of the merry-go-round. What...
A merry-go-round with a a radius of R = 1.84 m and moment of inertia I...
A merry-go-round with a a radius of R = 1.84 m and moment of inertia I = 206 kg-m2 is spinning with an initial angular speed of ? = 1.54 rad/s in the counter clockwise direection when viewed from above. A person with mass m = 66 kg and velocity v = 4.5 m/s runs on a path tangent to the merry-go-round. Once at the merry-go-round the person jumps on and holds on to the rim of the merry-go-round. 1)...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT