Question

A block of mass 5m is attached horizontally to an ideal spring with spring constant is...

A block of mass 5m is attached horizontally to an ideal spring with spring constant is equal to k’. The block and spring are resting on a horizontal, flat, and frictionless table.

At t = 0, the block is at x = +d/3 and the block is slowing down. The full-range amplitude of the oscillation of the block is equal to 6d. Assume you know: k’, m, d

Answer the following questions about the motion of the block and the forces acting on it:

If you drew a free-body diagram for t = 0, and were labeling all forces, including a sign convention, which direction (towards positive or towards negative x) would the horizontal force on the block be pointing? (1 point)

If you drew a motion diagram for the block at t = 0, which direction would the block be traveling, and which direction would the acceleration vector be pointing? (1 point)

Determine the period of oscillation of the system. (Your answer will be symbolic) (3 points)

Determine the phase shift (also known as the phase constant) of the system. (You can express your answer symbolically) (3 points)

Determine the equation of position with respect to time for this system. (4 points)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A block is attached to a spring, with spring constant k, which is attached to a...
A block is attached to a spring, with spring constant k, which is attached to a wall. It is initially moved to the left a distance d (at point A) and then released from rest, where the block undergoes harmonic motion. The floor is frictionless. The points labelled A and C are the turning points for the block, and point B is the equilibrium point. 1) Which of these quantities are conserved for the spring and block system (Select all...
An object of mass of 2.7 kg is attached to a spring with a force constant...
An object of mass of 2.7 kg is attached to a spring with a force constant of k = 280 N/m. At t = 0, the object is observed to be 2.0 cm from its equilibrium position with a speed of 55 cm/s in the -x direction. The object undergoes simple harmonic motion “back and forth motion” without any loss of energy. (a) Sketch a diagram labeling all forces on the object and calculate the maximum displacement from equilibrium of...
A block of mass m is attached to a massless spring having a spring constant k...
A block of mass m is attached to a massless spring having a spring constant k and moves on a horizontal surface. It oscillates along the x-axis about its equilibrium position at x = 0. There is a frictional force of constant magnitude f between the block and the surface. Suppose the mass is pulled to the right to x = A and released at time t=0. (a) Find the position of the mass as it reaches the left turning...
Part A A block of unknown mass is attached to a spring with a spring constant...
Part A A block of unknown mass is attached to a spring with a spring constant of 5.50 N/m and undergoes simple harmonic motion with an amplitude of 10.0 cm. When the block is halfway between its equilibrium position and the end point, its speed is measured to be 28.0 cm/s. (a) Calculate the mass of the block. ________kg (b) Calculate the period of the motion. ________s (c) Calculate the maximum acceleration of the block. ________m/s2 Part B A block-spring...
A block of mass m = 0.53 kg attached to a spring with force constant 119...
A block of mass m = 0.53 kg attached to a spring with force constant 119 N/m is free to move on a frictionless, horizontal surface as in the figure below. The block is released from rest after the spring is stretched a distance A = 0.13 m. (Indicate the direction with the sign of your answer. Assume that the positive direction is to the right.) The left end of a horizontal spring is attached to a vertical wall, and...
1. A mass 0.15 kg is attached to a horizontal spring with spring constant k =...
1. A mass 0.15 kg is attached to a horizontal spring with spring constant k = 100 N/m moves on a horizontal surface. At the initial moment in time, the mass is moving to the right at rate of 3.5 m/s and displacement of 0.2 m to the right of equilibrium. a) What is the angular frequency, period of oscillation, and phase constant? b) What is the amplitude of oscillation (Hint: Use energy.) and maximum speed of the spring-mass system?
A block of mass m = 1.5 kg is attached to a massless, frictionless vertical spring...
A block of mass m = 1.5 kg is attached to a massless, frictionless vertical spring and stretches the spring by an amount y0 = 0.15m a)find the spring constant k of the spring b) the block is then pulled down by an additional 0.05m below its equilibrium position and is released. express the position of the block during its resulting simple harmonic motion using the equation y(t) = ymcos(wt+@). c) find the maximum acceleration fo the block A(m). d)...
A block of mass m = 4.5 kg is attached to a spring with spring constant...
A block of mass m = 4.5 kg is attached to a spring with spring constant k = 610 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 29° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk = 0.13. In the initial position, where the spring is compressed by a distance of d = 0.19 m, the mass is at...
A 0.500-kg mass attached to an ideal massless spring with a spring constant of 12.5 N/m...
A 0.500-kg mass attached to an ideal massless spring with a spring constant of 12.5 N/m oscillates on a horizontal, frictionless surface. At time t = 0.00 s, the mass is located at x = –2.00 cm and is traveling in the positive x-direction with a speed of 8.00 cm/s. PART A: Find the angular frequency of the oscillations. Express your answer in rad/s. PART B: Determine the amplitude of the oscillations. Express your answer with the appropriate SI units....
A block is attached to a horizontal spring with a spring constant of 5.0 kg s?...
A block is attached to a horizontal spring with a spring constant of 5.0 kg s? 2. The block is displaced 0.5m from equilibrium and released (see the figure below). The block executes simple harmonic motion with a period of 4.0 s .Assuming that the block is moving on a frictionless surface, and the spring is of negligible mass. a. Calculate the mass of the block? b. Determine the velocity of the block 1.0 seconds after it is released? The...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT