Question

A series RLC circuit contains a 210 Ω resistor, a 17.0 mH inductor, a 2.70 μF...

A series RLC circuit contains a 210 Ω resistor, a 17.0 mH inductor, a 2.70 μF capacitor, and an AC voltage source of amplitude 45.0 V operating at an angular frequency of 360 rad/s.

(a) What is the power factor of this circuit?

(b) Find the average power delivered to the entire circuit by the source, in W

(c) What is the average power delivered to the capacitor, in W?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A series ac circuit contains a 350-Ω resistor, a 11.0-mH inductor, a 3.70-μF capacitor, and an...
A series ac circuit contains a 350-Ω resistor, a 11.0-mH inductor, a 3.70-μF capacitor, and an ac power source of voltage amplitude 45.0 V operating at an angular frequency of 360 rad/s . What is the power factor of this circuit? Find the average power delivered to the entire circuit. What is the average power delivered to the resistor, to the capacitor, and to the inductor? Enter your answers numerically separated by commas.
Consider a series RLC circuit with R = 24 Ω, L = 6.0 mH, and C...
Consider a series RLC circuit with R = 24 Ω, L = 6.0 mH, and C = 32 μF. The circuit is connected to a 10-V (rms), 600-Hz AC source. (a) Is the sum of the voltage drops across R, L, and C equal to 10 V (rms)? (b) Which is greatest, the power delivered to the resistor, to the capacitor, or to the inductor? (c) Find the average power delivered to the circuit.  W
A series RLC circuit consists of a 40.0 Ω resistor, a 2.70 mH inductor, and a...
A series RLC circuit consists of a 40.0 Ω resistor, a 2.70 mH inductor, and a 410 nF capacitor. It is connected to a 3.0 kHz oscillator with a peak voltage of 6.00 V. A. What is the instantaneous emf when i =I? B. What is the instantaneous emf  when i =0 A and is decreasing? C. What is the instantaneous emf  when i =−I?
An RLC series circuit has a 210 Ω resistor and a 25.0 mH inductor. At 8300...
An RLC series circuit has a 210 Ω resistor and a 25.0 mH inductor. At 8300 Hz, the phase angle is 45.0°. Part a (the impedance) had an answer of 296.58 ohms, but I can't seem to figure out part b: Find the minimum possible capacitance (in nF) of the circuit.
An L-R-C series circuit consists of a 60.0 Ω resistor, a 16.0 μF capacitor, a 4.00...
An L-R-C series circuit consists of a 60.0 Ω resistor, a 16.0 μF capacitor, a 4.00 mH inductor, and an ac voltage source of voltage amplitude 55.0 V operating at 1500 Hz . The current amplitude across the inductor, the resistor, and the capacitor is 0.814A...now, double the frequency and... a. Find new current amplitude across the inductor, the resistor, and the capacitor. b. Find new voltage amplitudes across the inductor, the resistor, and the capacitor.
A 23-Ω resistor, 58-μF capacitor, and 3.5-mH inductor are connected in series with an AC source...
A 23-Ω resistor, 58-μF capacitor, and 3.5-mH inductor are connected in series with an AC source of amplitude 12 V and frequency 120 Hz. Part (h) With a source voltage of Vsource = V0 cos(2πft), what is the instantaneous voltage, in volts, across the capacitor at time t = 2.25 s? Part (i) What is the amplitude of the voltage drop across the inductor, in volts? Part (j) With a source voltage of Vsource = V0cos(2πft), what is the instantaneous...
A series AC circuit contains a resistor, an inductor of 210 mH, a capacitor of 5.50...
A series AC circuit contains a resistor, an inductor of 210 mH, a capacitor of 5.50 µF, and a source with ΔVmax = 240 V operating at 50.0 Hz. The maximum current in the circuit is 200 mA. (a) Calculate the inductive reactance. Ω (b) Calculate the capacitive reactance. Ω (c) Calculate the impedance. kΩ (d) Calculate the resistance in the circuit. kΩ (e) Calculate the phase angle between the current and the source voltage. °
You have a resistor of resistance 210 Ω , an inductor of inductance 0.360 H ,...
You have a resistor of resistance 210 Ω , an inductor of inductance 0.360 H , a capacitor of capacitance 5.90 μF and a voltage source that has a voltage amplitude of 29.0 V and an angular frequency of 200 rad/s . The resistor, inductor, capacitor, and voltage source are connected to form an L-R-C series circuit. What is the impedance of the circuit? What is the current amplitude? What is the phase angle of the source voltage with respect...
You have a 199 −Ω−Ω resistor, a 0.405 −H−H inductor, a 5.10 −μF capacitor, and a...
You have a 199 −Ω−Ω resistor, a 0.405 −H−H inductor, a 5.10 −μF capacitor, and a variable-frequency ac source with an amplitude of 3.10 VV . You connect all four elements together to form a series circuit. -At what frequency will the current in the circuit be greatest? -What will be the current amplitude at this frequency? -What will be the current amplitude at an angular frequency of 401 rad/srad/s ? -At this frequency, will the source voltage lead or...
An RLC series circuit has a 3.30 Ω resistor, a 120 μH inductor, and an 65.0...
An RLC series circuit has a 3.30 Ω resistor, a 120 μH inductor, and an 65.0 μF capacitor. (a)Find the power factor at f = 120 Hz. (b)What is the phase angle at 120 Hz? (c) If the voltage source has Vrms = 4.10 V, what is the average power at 120 Hz? (d)Find the average power at the circuit’s resonant frequency.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT