Question

The ionized helium atom can be treated with a Bohr model with nuclear charge Z=2. The...

The ionized helium atom can be treated with a Bohr model with nuclear charge Z=2. The resulting energy levels are four times those of the hydrogen atom:

Ehelium=4Ehydrogen= -(54.4eV)/n^2

From those energy levels, calculate the wavelengths of spectral lines from ionized helium for transitions that end on nf=1. Do any of these lie in the visible range? Would any spectral lines of ionized helium lie in the visible range?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The electronic energy levels for a Helium ion He+ (ie a nuclear charge of +2e and...
The electronic energy levels for a Helium ion He+ (ie a nuclear charge of +2e and a single bound electron of –e) are similar to that of the hydrogen atom (ie a nuclear charge of +e and a single bound electron of charge –e), except for an extra factor of 4 corresponding to the square of the nuclear charge changing from (+e)2 for hydrogen to (+2e)2 for Helium. Thus, the electronic energy levels for Helium are 4 times the electronic...
Singly ionized helium (He+) atom/ion has a single remaining electron and a nuclear charge of +2?...
Singly ionized helium (He+) atom/ion has a single remaining electron and a nuclear charge of +2? (twice that of a proton). Using the Bohr model with appropriate modifications, estimate a) the radius and b) the total energy (in electron volts) of such an atom in its first excited level. c) When the state of this atom changes from the first excited level to the ground level, a photon is emitted in the process. Estimate the energy (in electron volts) of...
Let's use the Bohr model equations to explore some properties of the hydrogen atom. We will...
Let's use the Bohr model equations to explore some properties of the hydrogen atom. We will determine the kinetic, potential, and total energies of the hydrogen atom in the n=2 state, and find the wavelength of the photon emitted in the transition n=2?n=1. Find the wavelength for the transition n=3 ? n=2 for singly ionized helium, which has one electron and a nuclear charge of 2e. (Note that the value of the Rydberg constant is four times as great as...
Consider an atom of singly- ionized helium (Z=2) a. calculate its ground-state energy in eV b....
Consider an atom of singly- ionized helium (Z=2) a. calculate its ground-state energy in eV b. work out an expression for the wavelengths of photons needed to raise the ion from its ground state to the state n. compute values (in nm) of the largest and samllest such wavelengths c. compute the circumference (in nm) of the orbit for the particular value of n in part b that gives the largest wavelength and its orbital speed as a fraction of...
(a) (5 pts.) What are the three lowest energies of the singly ionized He-atom according to...
(a) (5 pts.) What are the three lowest energies of the singly ionized He-atom according to the Bohr model? (b) (5 pts.) Calculate the energies of the photons emitted when electronic transitions take place between all possible states. The excited levels of Hydrogen have lifetimes of order 10^-8 s. In very highly excited states (large n), the states get closer and closer together.   At what value of n do the spacings of the energy levels become comparable to the energy...
The Bohr Model of the hydrogen atom proposed that there were very specific energy states that...
The Bohr Model of the hydrogen atom proposed that there were very specific energy states that the electron could be in. These states were called stationary orbits or stationary states. Higher energy states were further from the nucleus. These orbits were thought to be essentially spherical shells in which the electrons orbited at a fixed radius or distance from the nucleus. The smallest orbit is represented by n=1, the next smallest n=2, and so on, where n is a positive...
Answer the following questions using the Bohr model of the hydrogen atom. a) A hydrogen atom...
Answer the following questions using the Bohr model of the hydrogen atom. a) A hydrogen atom is the n = 3 excited state when its electron absorbs a photon of energy 4.40 eV. Draw a diagram roughly to scale, of relevant energy levels for this situation. Make sure to show and label the initial energy of the H atom in the n=3 state, the energy level at which this atom loses its electron, and kinetic energy of the electron. b)What...
Iron Emission Lines a.) According to the Bohr model, what is the energy of a photon...
Iron Emission Lines a.) According to the Bohr model, what is the energy of a photon emitted as an electron falls from the n = 2 to the n = 1 state of an iron (Fe) atom? Recall that the nuclear charge Z of Fe is 26. You may neglect the influence of the other electrons outside the ground state. Give your answer in keV. What part of the spectrum does this lie in? b.) According to the Bohr model,...
1). The Bohr Model of the hydrogen atom proposed that there were very specific energy states...
1). The Bohr Model of the hydrogen atom proposed that there were very specific energy states that the electron could be in. These states were called stationary orbits or stationary states. Higher energy states were further from the nucleus. These orbits were thought to be essentially spherical shells in which the electrons orbited at a fixed radius or distance from the nucleus. The smallest orbit is represented by n=1, the next smallest n=2, and so on, where n is a...
Chapter 32: The Atom and the Quantum 1. In relation to the atom as a whole...
Chapter 32: The Atom and the Quantum 1. In relation to the atom as a whole (in terms of mass, size, charge), how is the nucleus of an atom characterized? 2. What was Rutherford's famous gold foil experiment? (Provide a sketch.) 3. What conclusions were drawn from the results of this experiment? And how were these conclusions drawn? 4. In general, what kinds of clues to atomic structure were provided by atomic spectra at that time? 5. What is the...