Question

A 1,240-kg car traveling initially with a speed of 25.0 m/s in an easterly direction crashes...

A 1,240-kg car traveling initially with a speed of 25.0 m/s in an easterly direction crashes into the rear end of a 8,700-kg truck moving in the same direction at 20.0 m/s (see figure below). The velocity of the car right after the collision is 18.0 m/s to the east.

Two images depicting a before and after scenario of a car colliding with the back of a truck.

  • Before: The car is moving at a velocity of +25.0 m/s. This is shown as a rightward-moving horizontal arrow above the car. The truck is moving at a velocity of +20.0 m/s. This is shown as a rightward-moving horizontal arrow, shorter than that of the car, above the truck.
  • After: The car is shown crashing into the back of the truck. At this point, the velocity of the car is shown to be +18.0 m/s. This is shown as a rightward-moving horizontal arrow above the car. The velocity of the truck is shown to be v. This is shown as a rightward-moving horizontal arrow, longer than that of the car, above the truck.

(a) What is the velocity of the truck right after the collision? (Round your answer to at least three decimal places.)
m/s (east)

(b) How much mechanical energy is lost in the collision?
______ J

(C) Account for this loss in energy. Explain.

Show all Work!

Homework Answers

Answer #1

c. The mechanical energy in collisions of macroscopic objects like car, truck etc is converted to vibrational energy of atoms which results in deformation of bodies and heating effect.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 1,270-kg car traveling initially with a speed of 25.0 m/s in an easterly direction crashes...
A 1,270-kg car traveling initially with a speed of 25.0 m/s in an easterly direction crashes into the rear end of a 8,600-kg truck moving in the same direction at 20.0 m/s (see figure below). The velocity of the car right after the collision is 18.0 m/s to the east. (a) What is the velocity of the truck right after the collision? m/s (east) (b) How much mechanical energy is lost in the collision?   J Account for this loss in...
A 1,160-kg car traveling initially with a speed of 25.0 m/s in an easterly direction crashes...
A 1,160-kg car traveling initially with a speed of 25.0 m/s in an easterly direction crashes into the rear end of a 8,800-kg truck moving in the same direction at 20.0 m/s (see figure below). The velocity of the car right after the collision is 18.0 m/s to the east.   (a) What is the velocity of the truck right after the collision? (b) How much mechanical energy is lost in the collision? c) Account for this loss in energy.
A 1 150.0 kg car traveling initially with a speed of 25.000 m/s in an easterly...
A 1 150.0 kg car traveling initially with a speed of 25.000 m/s in an easterly direction crashes into the back of a 8 000.0 kg truck moving in the same direction at 20.000 m/s. The velocity of the car right after the collision is 18.000 m/s to the east. (a) What is the velocity of the truck right after the collision? (Give your answer to five significant figures.) m/s east (b) What is the change in mechanical energy of...
A 1,200-kg car traveling initially with a speed of 25.0 m/s crashes into the rear of...
A 1,200-kg car traveling initially with a speed of 25.0 m/s crashes into the rear of a 9,000-kg truck moving in the same direction at 20.0 m/s. The velocity of the car after the collision is 17.5 m/s. a) What is the velocity of the truck right after the collision? b) How much mechanical energy is lost in the collision?
A 1000-kg car moving north with a speed of 25.0 m/s collides with a 2000- kg...
A 1000-kg car moving north with a speed of 25.0 m/s collides with a 2000- kg truck moving at an angle of 30° north of west with a speed of 20.0 mjs. After the collision, the car and the truck stuck together. What is the magnitude of their common velocity after the collision?
A 5.0 kg toy-car moving with a speed of 10.0 m/s in +x direction collides with...
A 5.0 kg toy-car moving with a speed of 10.0 m/s in +x direction collides with a 7.0 kg toy truck moving with a velocity of 15.0 m/s in a direction 37 degrees above +x direction. What is the velocity, both the magnitude and direction, of the two objects after the collision, if they remain stuck together?
A 900-kg car traveling east at 15.0 m/s collides with a 750-kg car traveling north at...
A 900-kg car traveling east at 15.0 m/s collides with a 750-kg car traveling north at 20.0 m/s. The cars stick together. What is the speed of the wreckage just after the collision? In what direction does the wreckage move just after the collision?
a 1.5 kg car (1) initially moving at 4.0 m/s to the right collides with a...
a 1.5 kg car (1) initially moving at 4.0 m/s to the right collides with a 2.0 kg car (2) initially moving at 2.0 m/s to the left. After the inelastic collision, car 1 is moving to the left at 1.2 m/s A) What is the velocity and direction of car 2 after the collision? B) What is the change in total kinetic energy and the percentage of initial kinetic energy remaining after the collision?
A 1000-kg car approaches an intersection traveling north at 20.0 m/s. A car of equal mass...
A 1000-kg car approaches an intersection traveling north at 20.0 m/s. A car of equal mass approaches the same intersection traveling east at 22.0 m/s. The two cars collide at the intersection and lock together. Ignoring any external forces that act on the cars during the collision, what is the velocity ,aka, magnitude and direction, of the cars immediately after collision?
A 1000-kg sports car is moving north at speed 15 m/s on a level road when...
A 1000-kg sports car is moving north at speed 15 m/s on a level road when it collides with a 2000-kg truck driving east on the same road at speed 10 m/s. The two vehicles remain locked moving together after the collision at the origin of x-y plane. Assume that the rolling friction is too small to be ignored. A) explain what type of collision it is B) indicate the vector momentum by showing its magnitude and the (direction) angle...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT