Question

6. A 10-kg block on a horizontal surface with a coefficient of friction of .5. It...

6. A 10-kg block on a horizontal surface with a coefficient of friction of .5. It is attached to a light spring (force constant =11 00 N/m). The block is pulled to the right a distance of .25 m from equilibrium position and released. . What will be the speed of the block after it has moved 15cm back

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A block of mass m = 0.53 kg attached to a spring with force constant 119...
A block of mass m = 0.53 kg attached to a spring with force constant 119 N/m is free to move on a frictionless, horizontal surface as in the figure below. The block is released from rest after the spring is stretched a distance A = 0.13 m. (Indicate the direction with the sign of your answer. Assume that the positive direction is to the right.) The left end of a horizontal spring is attached to a vertical wall, and...
A 2.90 kg block on a horizontal floor is attached to a horizontal spring that is...
A 2.90 kg block on a horizontal floor is attached to a horizontal spring that is initially compressed 0.0340 m . The spring has force constant 850 N/m . The coefficient of kinetic friction between the floor and the block is 0.42 . The block and spring are released from rest and the block slides along the floor. Part A What is the speed of the block when it has moved a distance of 0.0190 m from its initial position?...
A block of mass m = 2.00 kg is attached to a spring of force constant...
A block of mass m = 2.00 kg is attached to a spring of force constant k = 600 N/m as shown in the figure below. The block is pulled to a position xi = 5.35 cm to the right of equilibrium and released from rest. (a) Find the speed the block has as it passes through equilibrium if the horizontal surface is frictionless. m/s (b) Find the speed the block has as it passes through equilibrium (for the first...
. A block of mass 2.00 kg is attached to a horizontal spring with a force...
. A block of mass 2.00 kg is attached to a horizontal spring with a force constant of 500 N/m. The spring is stretched 5.00 cm from its equilibrium position and released from rest. Use conservation of mechanical energy to determine the speed of the block as it returns to equilibrium (a) if the surface is frictionless (b) if the coefficient of kinetic friction between the block and the surface is 0.350
A 6.53-kg block initially at rest is pulled to the right along a horizontal surface by...
A 6.53-kg block initially at rest is pulled to the right along a horizontal surface by a constant force of 125 N applied at an angle θ above the horizontal. The coefficient of kinetic friction between the block and the horizontal surface is 0.150. At what angle θ above the horizontal surface should the force be applied to achieve the largest possible speed after the block has moved 5.00 m to the right?
A 28 kg block on a horizontal surface is attached to a horizontal spring of spring...
A 28 kg block on a horizontal surface is attached to a horizontal spring of spring constant k = 4.8 kN/m. The block is pulled to the right so that the spring is stretched 7.2 cm beyond its relaxed length, and the block is then released from rest. The frictional force between the sliding block and the surface has a magnitude of 37 N. (a) What is the kinetic energy of the block when it has moved 1.6 cm from...
Five different experiments are carried out. In each experiment, a block is attached to a horizontal...
Five different experiments are carried out. In each experiment, a block is attached to a horizontal spring. The block is pulled back a certain distance and released. The block oscillates back and forth on a frictionless surface. Rank the maximum force on the block for each of the following situations. (Rank the smallest force as 1). A block of mass M is attached to a spring with a spring constant k, pulled back a distance d, and released. A block...
A 4.37 kg block free to move on a horizontal, frictionless surface is attached to one...
A 4.37 kg block free to move on a horizontal, frictionless surface is attached to one end of a light horizontal spring. The other end of the spring is fixed. The spring is compressed 0.117 m from equilibrium and is then released. The speed of the block is 1.01 m/s when it passes the equilibrium position of the spring. The same experiment is now repeated with the frictionless surface replaced by a surface for which uk = 0.345. Determine the...
A 4.0-kg block initially at rest is pulled to the right along a horizontal surface by...
A 4.0-kg block initially at rest is pulled to the right along a horizontal surface by a constant horizontal force of 12 N. Find the speed of the block after it has moved 3.0 m if the surfaces in contact have a coefficient of kinetic friction of 0.17 _____. a. 1.8 m/s b. 3.5 m/s c. 2.8 m/s d. 5.3 m/s Suppose the force is applied at an angle. At what angle should the force be applied to achieve the...
A 0.019 kg block on a horizontal frictionless surface is attached to a string whose spring/force/elastic...
A 0.019 kg block on a horizontal frictionless surface is attached to a string whose spring/force/elastic constant k is 120 N/m. The block is pulled from its equilibrium position at x=0 m to a displacement x=+0.080 m and is released from rest. The block then executes simple harmonic motion along x-axis (horizontal). When the displacement is x=0.051 m, what is the kinetic energy of the block in J?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT