Question

How many lines per millimeter are there on a diffraction grating that gives a first-order maximum...

How many lines per millimeter are there on a diffraction grating that gives a first-order maximum for 470-nm blue light at an angle of 250 ?

A) 900 lines/mm

B) 111 lines/mm

C) 8.99 X 105 lines/mm

D)53,000 lines/mm

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Light of wavelength 570 nm illuminates a diffraction grating. The second-order maximum is at angle 41.5...
Light of wavelength 570 nm illuminates a diffraction grating. The second-order maximum is at angle 41.5 degrees. How many lines per millimeter does this grating have?
A. A diffraction grating has 2400 lines per centimeter. At what angle in degrees will the...
A. A diffraction grating has 2400 lines per centimeter. At what angle in degrees will the first-order maximum be for 522 nm wavelength light? B. What is the wavelength of light (in nanometers) falling on double slits separated by 2.34 μm if the third-order maximum is at an angle of 62.5º? C. At what angle, in degrees, is the second minimum for 555 nm light falling on a single slit of width 2.35 μm ? D. Find the distance between...
Suppose that you have a reflection diffraction grating with n= 105 lines per millimeter. Light from...
Suppose that you have a reflection diffraction grating with n= 105 lines per millimeter. Light from a sodium lamp passes through the grating and is diffracted onto a distant screen. Two visible lines in the sodium spectrum have wavelengths 498 nmand 569 nm. What is the angular separation ?? of the first maxima of these spectral lines generated by this diffraction grating? How wide does this grating need to be to allow you to resolve the two lines 589.00 and...
A diffraction grating is made with 750 lines per millimeter is illuminated with violet light of...
A diffraction grating is made with 750 lines per millimeter is illuminated with violet light of wave length 400nm. How many lines can be observed with this grating? If the intense white light is incident on the same diffracting grating what is the angular separation between the violet edge (400nm) and red edge (700nm)? What is the highest order in which the complete visible spectrum can be seen using this grating (λ =400-700nm)?
White light is incident upon a diffraction grating with 1200 lines per mm. What is the...
White light is incident upon a diffraction grating with 1200 lines per mm. What is the angle between the red light (700 nm) and green light (550 nm) leaving the grating in the first order bright fringe? a. 32.8 degrees b. 24.5 degrees c. 57.2 degrees d. 15.9 degrees
White light is incident upon a diffraction grating with 1200 lines per mm. What is the...
White light is incident upon a diffraction grating with 1200 lines per mm. What is the angle between the red light (700 nm) and green light (550 nm) leaving the grating in the first order bright fringe? a. 32.8 degrees b. 24.5 degrees c. 57.2 degrees d. 15.9 degrees
Monochromatic light at 577 nm illuminates a diffraction grating with 325 lines/mm. Determine (a) the angle...
Monochromatic light at 577 nm illuminates a diffraction grating with 325 lines/mm. Determine (a) the angle to the first - order maximum, (b) the highest order that can be observed with this grating at the given wavelength, and (c) the angle to this highest - order maximum
Suppose that you have a transmission diffraction grating with n = 105 lines per mm. Light...
Suppose that you have a transmission diffraction grating with n = 105 lines per mm. Light from a sodium lamp is incident perpendicular to the grating surface (i.e. ?i = 0), passes through the grating and is diffracted onto a distant screen. (i) Two (weak) visible lines in the sodium spectrum have wavelengths 498 nm and 569 nm. What is the angular separation ?? of the first order (m = 1) maxima of these spectral lines generated by this diffraction...
It is found that when blue light, λ = 470 nm, passes through a diffraction grating...
It is found that when blue light, λ = 470 nm, passes through a diffraction grating with a slit separation d, the diffraction pattern has a third order maximum at an angle θ = 44.8o. At what angle will red light, λ = 660 nm, have it's second order maximum when passed through the same diffraction grating. A. 29.4o B. 39.7o C. 41.3o D. 31.6o
A-The first-order line of 584 nm light falling on a diffraction grating is observed at a...
A-The first-order line of 584 nm light falling on a diffraction grating is observed at a 16.6° angle. Calculate the number of lines per centimetre on the grating. B- At what angle will the second-order line be observed?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT