Question

2.1 mol of an ideal gas isothermally expands from an initial pressure of 28 atm to...

2.1 mol of an ideal gas isothermally expands from an initial pressure of 28 atm to a final pressure of 7 atm. Calculate separately for two temperatures, 0°C and 25°C, each of the following. (Include the sign of the value in your answer.)

(a) the work done on the gas (in kJ)

for T = 0°C and

for T = 25°C

(b) the change of internal energy of the gas (in kJ)

for T = 0°C and

for T = 25°C

(c) the amount of heat taken from the environment (in kJ)

for T = 0°C and

for T = 25°C

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 2.00-mol sample of a diatomic ideal gas expands slowly and adiabatically from a pressure of...
A 2.00-mol sample of a diatomic ideal gas expands slowly and adiabatically from a pressure of 5.04 atm and a volume of 13.0 L to a final volume of 31.0 L. (a) What is the final pressure of the gas? atm (b) What are the initial and final temperatures? initial K final K (c) Find Q for the gas during this process. kJ (d) Find ΔEint for the gas during this process. kJ (e) Find W for the gas during...
3. An ideal monatomic gas expands isothermally from .500 m3 to 1.25 m3 at a constant...
3. An ideal monatomic gas expands isothermally from .500 m3 to 1.25 m3 at a constant temperature of 675 K. If the initial pressure is 1.00 ∙ 105 Pa, find (a) the work done by the gas, (b) the thermal energy transfer Q, and (c) the change in the internal energy.
An ideal monatomic gas expands isothermally from 0.600 m3 to 1.25 m3 at a constant temperature...
An ideal monatomic gas expands isothermally from 0.600 m3 to 1.25 m3 at a constant temperature of 730 K. If the initial pressure is 1.02 ? 105 Pa find the following. (a) the work done on the gas J (b) the thermal energy transfer Q J (c) the change in the internal energy J
2.)1.0 mol sample of an ideal monatomic gas originally at a pressure of 1 atm undergoes...
2.)1.0 mol sample of an ideal monatomic gas originally at a pressure of 1 atm undergoes a 3-step process as follows:                  (i)         It expands adiabatically from T1 = 588 K to T2 = 389 K                  (ii)        It is compressed at constant pressure until its temperature reaches T3 K                  (iii)       It then returns to its original pressure and temperature by a constant volume process. A). Plot these processes on a PV diagram B). Determine the temperature T3 C)....
An ideal gas expands quasistatically and isothermally from a state with pressure p and volume V...
An ideal gas expands quasistatically and isothermally from a state with pressure p and volume V to a state with volume 6.9V. How much heat is added to the expanding gas? (Use any variable or symbol stated above as necessary.)
1 mole methane gas (NOT ideal gas) isothermally expands from initial pressure of 5 bar to...
1 mole methane gas (NOT ideal gas) isothermally expands from initial pressure of 5 bar to 1bar at 50oC. Estimate the ENTROPY change (?S) for the gas using Lee/Kesler generalized correlation tables
A mole of a monatomic ideal gas is taken from an initial pressure p and volume...
A mole of a monatomic ideal gas is taken from an initial pressure p and volume V to a final pressure 3p and volume 3V by two different processes: (I) It expands isothermally until its volume is tripled, and then its pressure is increased at constant volume to the final pressure. (II) It is compressed isothermally until its pressure is tripled, and then its volume is increased at constant pressure to the final volume. Show the path of each process...
A 2.5 mol sample of ideal gas initially at 1 atm and 25 °C is expanded...
A 2.5 mol sample of ideal gas initially at 1 atm and 25 °C is expanded isothermally (ΔT = 0) and reversibly to twice its original volume. What is the change in internal energy?
A two mole sample of an ideal diatomic gas expands slowly and adiabatically from a pressure...
A two mole sample of an ideal diatomic gas expands slowly and adiabatically from a pressure of 5 atm. and a volume of 10 liters up to a final volume of 30 liters. a) What is the final pressure of the gas ?, b) Whatis the heat, work and internal energy?
One mole of an ideal gas at atmospheric pressure expands isobarically from a volume of 1m3...
One mole of an ideal gas at atmospheric pressure expands isobarically from a volume of 1m3 to a volume of 2m3. 1 - Find the initial and final temperatures of the gas 2 - Find the work done by the gas 3 - Find the heat added to the gas