Question

A conducting bar of length 2.0 m moves on two horizontal frictionless rails with a resistor...

A conducting bar of length 2.0 m moves on two horizontal frictionless rails with a resistor that is connected at the left ends between the two rails. A constant force of magnitude 1.0 N moves the bar at a uniform speed of 2.0 m/s to the right through a magnetic field-B that is directed into the page. Draw the diagram.

  1. If the resistor in the loop is 8.0 ohms, what is the direction and magnitude of the induced current in the bar?
  2. What is the magnitude of the B-field?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A conducting bar of slides on frictionless conducting rails, falling under the influence of ordinary gravity....
A conducting bar of slides on frictionless conducting rails, falling under the influence of ordinary gravity. The rails are vertical and they sit in a powerful magnetic field which is perpendicular to the plane of the rails. The bar somehow maintains good electrical contact with the rails. At the top of the bar, the two rails are connected by a fixed resistor, R. a. As the bar falls, a current will be induced. Will this current be in the clockwise...
A uniform magnetic field is directed into the screen. There are two parallel conducting rails, running...
A uniform magnetic field is directed into the screen. There are two parallel conducting rails, running horizontally, in the field, with a conducting rod on top of the rails. The rails are a distance L apart. The picture shows a force F directed to the right on the rod. The rails are joined at the left by a resistor of resistance R. ​We'll use these values: L = 20 cm; B = 4.0 T; F = 3.2 N; and R...
Problem 1. Two horizontal parallel conducting rods are connected such that a conducting crossbar free to...
Problem 1. Two horizontal parallel conducting rods are connected such that a conducting crossbar free to slide along them has a constant current I running through it (Fig. P27.34). The rods are separated by a distance l and are in an external uniform magnetic field of magnitude B directed out of the page. The crossbar has a length l and mass m. (a) In which direction will the magnetic force accelerate the crossbar? (b) If the coefficient of static friction...
A conducting bar of length L and resistance R is free to slide on frictionless conducting...
A conducting bar of length L and resistance R is free to slide on frictionless conducting rails of negligible resistance. The circuit is immersed in a uniform and steady magnetic field of strength B. Initially the bar is at rest and the switch is open. The switch is closed. The battery provides a steady voltage V. a) What is the direction of the current at the instant the switch is closed? b) What is the magnitude of the current at...
A conducting rod of mass M with negligible electrical resistance slides on a pair of frictionless,...
A conducting rod of mass M with negligible electrical resistance slides on a pair of frictionless, horizontal, parallel, conducting rails separated by a distance L. The two rods are connected by an electrical resistance of R. A uniform magnetic field B is directed vertically upward in the entire region. Looking from above, is the conventional current flowing cw or ccw?                                                                                                       (2 pt) Determine the current through the resistor.                                                                                          (4 pt) Find the force necessary to keep the rod moving at...
A neutral copper bar of length L slides at constant speed v along metal rails in...
A neutral copper bar of length L slides at constant speed v along metal rails in a region in which there is a uniform magnetic field B directed into the page, as shown in the diagram below. The metal rails have negligible resistance.In what direction does conventional current flow through the circuit?
In the figure, a conducting rod of length L = 35.0 cm moves in a magnetic...
In the figure, a conducting rod of length L = 35.0 cm moves in a magnetic field B?  of magnitude 0.490 T directed into the plane of the figure. The rod moves with speed v = 6.00 m/s in the direction shown. When the charges in the rod are in equilibrium, what is the magnitude E of the electric field within the rod? What is the magnitude Vba of the potential difference between the ends of the rod? What is the...
In the figure, a conducting rod of length L = 33.0 cm moves in a magnetic...
In the figure, a conducting rod of length L = 33.0 cm moves in a magnetic field B? of magnitude 0.550 T directed into the plane of the figure. The rod moves with speed v = 4.00 m/s in the direction shown. 1. When the charges in the rod are in equilibrium, what is the magnitude E of the electric field within the rod?   2.What is the magnitude Vba of the potential difference between the ends of the rod? 3.What...
Consider a conducting rod of length 2.50 m immersed in a uniform magnetic field with strength...
Consider a conducting rod of length 2.50 m immersed in a uniform magnetic field with strength 4.00 T and oriented as shown in the figure. Assume that this rod is part of a closed conducting loop and is free to move. If this rod moves with speed 4.00 m/s in the +? − direction, what is the magnitude of the induced emf?
A copper bar is allowed to slide freely back and forth across two horizontal copper rails....
A copper bar is allowed to slide freely back and forth across two horizontal copper rails. The bar never loses contact with the rails. (a) If the magnetic field strength is uniform as shown with a field strength of 1 Tesla, what is the current in the 1000 Ohm resistor over time as a function of the speed of the bar away from the resistor? answer will in parametric (equation) form. (b) For a specific speed of 1 meter/second, what...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT