Question

A block of weight 3.8 N is launched up a 30 ∘ inclined plane of length...

A block of weight 3.8 N is launched up a 30 ∘ inclined plane of length 2.45 m by a spring with spring constant 2.35 kN/m and maximum compression 0.10 m . The coefficient of kinetic friction is 0.50.

-Does the block reach the top of the incline?

-If so, how much kinetic energy does it have there; if not, how close to the top, along the incline, does it get?

Homework Answers

Answer #1

Cheers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 10 kg block is launched up a plane inclined at a 15° angle. The initial...
A 10 kg block is launched up a plane inclined at a 15° angle. The initial speed of the block is 5 m/s. a) Using Newton's laws of motion and the equations of kinematics, calculate how far up the inclined plane does the block slide in the absence of friction? b) Using work and energy, answer the question in part (a) in the presence of friction, taking the coefficient of kinetic friction between the block and the surface to be...
A 2.4 kg block is launched along a level frictionless plane using a spring with constant...
A 2.4 kg block is launched along a level frictionless plane using a spring with constant 3000 N/m. When the spring is still compressed 10 cm = 0.10 m the block has a speed of 5 m/s. The block travels up a frictionless inclined plane to another level frictionless plane that is 0.76 m above the first. There is a spring at the end of the plane with constant 4000 N/m. How much kinetic energy does the block have when...
A block is given an initial push at the bottom of a 22 degree inclined plane....
A block is given an initial push at the bottom of a 22 degree inclined plane. If the coefficient of kinetic friction between the block and plane is 0.32, and the initial speed of the block at the bottom of the incline is 4.00 m/s, how far up the incline does the block travel before coming to rest?
A 4.25 kg block is projected at 5.40 m/s up a plane that is inclined at...
A 4.25 kg block is projected at 5.40 m/s up a plane that is inclined at 30.0° with the horizontal. The block slides some distance up the incline, stops turns around and slides back down to the bottom. When it reaches the bottom of the incline again, it is traveling with a speed of 3.80 m/s. If the coefficient of kinetic friction between the block and the plane is 0.500, how far up the incline did the block slide?
A block of mass m = 3.3 kg is on an inclined plane with a coefficient...
A block of mass m = 3.3 kg is on an inclined plane with a coefficient of friction μ1 = 0.39, at an initial height h = 0.53 m above the ground. The plane is inclined at an angle θ = 44°. The block is then compressed against a spring a distance Δx = 0.13 m from its equilibrium point (the spring has a spring constant of k1 = 35 N/m) and released. At the bottom of the inclined plane...
A spring (k = 100 N/m) is fixed at the top of a plane inclined at...
A spring (k = 100 N/m) is fixed at the top of a plane inclined at angle θ = 45°. A 2.0 kg block is projected up the plane, from an initial position that is distance d = 0.70 m from the end of the relaxed spring, with an initial speed of 6.00 m/s. The coefficient of kinetic friction between the block and the plane is 0.2 (a) What is the speed of the block at the instant it has...
Name:__________________________________________Section____ A block of mass ? = 12.0 kg is released from rest on an incline...
Name:__________________________________________Section____ A block of mass ? = 12.0 kg is released from rest on an incline angled at θ = 30 degrees. The block slides down and incline of length ? = 1.40 m along the incline, which has a coefficient of kinetic friction between the incline and the block of ?? = 0.180. The block then slides on a horizontal frictionless surface until it encounters a spring with a spring constant of ? = 205 N/m. Refer to the...
A delivery girl wishes to launch a 2.0-kg package up an inclined plane with sufficient speed...
A delivery girl wishes to launch a 2.0-kg package up an inclined plane with sufficient speed to reach the top of the incline. The plane is 3.0 m long and is inclined at 20 degrees. The coefficient of kinetic friction between the package and the plane is 0.40. What minimum initial kinetic energy must the girl supply to the package?
A block of mass4 kgkg  is dragged up an inclined plane. The plane is inclined at an...
A block of mass4 kgkg  is dragged up an inclined plane. The plane is inclined at an angle of 45degrees to the horizontal. The coefficient of kinetic friction between the block and the plane is 0.5. What force is needed to drag the block up the plane at a constant speed? What force is needed to accelerate the block up the plane at a rate of 5 meters per second squared? If the force acting in Part-B drags the block by...
A 193 g block is pressed against a spring of force constant 1.12 kN/m until the...
A 193 g block is pressed against a spring of force constant 1.12 kN/m until the block compresses the spring 14.8 cm. The spring rests at the bottom of a ramp inclined at 64.3o to the horizontal. A) Determine how far up the incline the block moves before it stops if there is no friction between the block and the ramp. B) How far up the incline does the block move before it stops if the coefficient of kinetic friction...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT