Question

Calculate the rotational inertia for one of the following objects, but not both. a) A cylinder...

Calculate the rotational inertia for one of the following objects, but not both.

a) A cylinder of hight 3m, radius 4m about its central axis. The density varies with radius. Rho = 2 r2 kg/m5.

b) A cone with its top removed about its central axis. It would have been a cone of height 6 meters and radius 2 meters, but the top two meters were chopped off (The part farthest from the base). The density is 2 kg/m3.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The density of a cylinder of radius R and length l varies linearly from the central...
The density of a cylinder of radius R and length l varies linearly from the central axis where ρ1=500 kg/m3 to the value ρ2=3ρ1. If R=.05 m and l= .1 m, find: a. The average density of the cylinder over the radius. b. The average density over its volume. c. the moment of inertia of the cylinder about its central axis.
A cylinder of radius R = 50 cm has rotational inertia I. It is rotating with...
A cylinder of radius R = 50 cm has rotational inertia I. It is rotating with angular velocity w = 2 rad / s. A bullet of mass m = 160 grams and speed v = 1500 m / s hits the cylinder at a distance 40 cm from its axis and remains there. Both the cylinder and the bullet stop after collision. Find I in units of kg - m2.
The rotational inertia I of any given body of mass M about any given axis is...
The rotational inertia I of any given body of mass M about any given axis is equal to the rotational inertia of an equivalent hoop about that axis, if the hoop has the same mass M and a radius k given by The radius k of the equivalent hoop is called the radius of gyration of the given body. Using this formula, find the radius of gyration of (a) a cylinder of radius 3.72 m, (b) a thin spherical shell...
A uniform cylinder of radius 21 cm and mass 23 kg is mounted so as to...
A uniform cylinder of radius 21 cm and mass 23 kg is mounted so as to rotate freely about a horizontal axis that is parallel to and 6.2 cm from the central longitudinal axis of the cylinder. (a) What is the rotational inertia of the cylinder about the axis of rotation? (b) If the cylinder is released from rest with its central longitudinal axis at the same height as the axis about which the cylinder rotates, what is the angular...
A solid cylinder is free to rotate about an axis through its center. If the rotational...
A solid cylinder is free to rotate about an axis through its center. If the rotational inertia of the cylinder is .56 kg m^2, and the cylinder is initially at rest, how long must a net torque of 2.1 Nm act on the cylinder to bring it up to an angular speed of 44 rad/s?
A uniform cylinder of radius 10 cm and mass 20 kg is mounted so as to...
A uniform cylinder of radius 10 cm and mass 20 kg is mounted so as to rotate freely about a horizontal axis that is parallel to and 5.0 cm from the central axis of the cylinder. (a) Draw a diagram showing the cylinder and the rotation axis. (b) What is the moment of inertia of the cylinder about the axis of rotation? (c) If the cylinder is released from rest with its central longitudnal axis at the same height about...
Three objects: disk, cylinder, and sphere are each rotating at 5 rads/s about an axis through...
Three objects: disk, cylinder, and sphere are each rotating at 5 rads/s about an axis through their center. If the mass and radius of each object is 5 kg and 2 m respectively. (a) What is is the moment of inertia of each object? (b) What is is the angular momentum of each object?
The angular momentum of a flywheel having a rotational inertia of 0.240 kg m2 about its...
The angular momentum of a flywheel having a rotational inertia of 0.240 kg m2 about its axis decreases from 5.70 to 0.60 kg m2/s in 1.80 s. What is the average torque acting on the flywheel about its central axis during this period? 2) Assuming a uniform angular acceleration, through what angle will the flywheel have turned?(rad) 3) How much work was done on the wheel? 4) What is the average power of the flywheel?
A pulley, with a rotational inertia of 1.7 ✕ 10−3 kg · m2 about its axle...
A pulley, with a rotational inertia of 1.7 ✕ 10−3 kg · m2 about its axle and a radius of 11 cm, is acted on by a force applied tangentially at its rim. The force magnitude varies in time as F = 0.50t + 0.30t2, where F is in newtons and t in seconds. The pulley is initially at rest. At t = 4.0 s what is its angular velocity (in rad/s)? Sample submission: 456
Moment of Inertia To find the moment of inertia of different objects and to observe the...
Moment of Inertia To find the moment of inertia of different objects and to observe the changes in angular acceleration relative to changing moments of inertia. To also learn how to use calipers in making precise measurements The momentum of inertia of an object is calculated as I=∑mr^2 If the object in question rotates around a central point, then it can be considered a "point mass", and its moment of inertia is simply,  I=mr^2 where r is from the central point...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT