Question

Another student makes the observation that the ground state of an electron in a hydrogen atom...

Another student makes the observation that the ground state of an electron in a hydrogen atom is a "1s" state and that the two ground-state electrons in a helium atom occupy the 1s state also. Extending this reasoning, the student concludes that the ground state of a neutral lithium atom (with its 3 electrons) would be for all 3 electrons to be in the 1s state. Do you agree or disagree with this conclusion regarding lithium? Explain why or why not based on physical principles.

Homework Answers

Answer #1

Disagree. The maximum number of electrons that a s subshell can accomodate is 2. So the first two electrons of Li will fill the 1s state and next electron will go to the next which is 2s. Since the no of electrons an orbit can accommodate is , maximum no of electrons in first orbit is 2. So the third electron will go to next shell which is the second orbit.

This is also in accordance with Paulis Exclusion Principle. That is no two electron can have same set of quantum numbers. Since there are only two possible values for spin quantum number, it is not possible to accommodate a third electron in the s subshell.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Which of the following statements concerning ground state electron configuration is/are CORRECT? 1.) For a hydrogen...
Which of the following statements concerning ground state electron configuration is/are CORRECT? 1.) For a hydrogen atom with one electron, the 2s and 2p orbitals have identical energies. 2.) For a lithium atom with three electrons, the 2s and 2p orbitals have different energies. 3.) The effective nuclear charge felt by an electron in a 2p orbital is greater for a carbon atom than for a boron atom?
why are the electrons of the helium atom not all in the 1s state. Which of...
why are the electrons of the helium atom not all in the 1s state. Which of the following choices best explains this observation? Coulomb's law the Pauli exclusion principle the Einstein quantum entanglement principle Rutherford's explanation of atomic structure the Heisenberg uncertainty principle 2.)There is a singly-ionized helium atom, which has 2 protons with its remaining electron in the ground state. Using the Bohr model calculation, determine the maximum wavelength in nanometers for a photon that could remove the remaining...
Consider the Bohr model of the hydrogen atom for which an electron in the ground state...
Consider the Bohr model of the hydrogen atom for which an electron in the ground state executes uniform circular motion about a stationary proton at radius a0. (a) Find an expression for the kinetic energy of the electron in the ground state. (b) Find an expression for the potential energy of the electron in the ground state. (c) Find an expression for the ionization energy of an electron from the ground state of the hydrogen atom. The ionization energy is...
Explain why a hydrogen atom with its electron in the ground state cannot absorb a photon...
Explain why a hydrogen atom with its electron in the ground state cannot absorb a photon of just any energy when making a transition to the second excited state (n = 3).
In the ground state of the Hydrogen atom the energy of the electron is E0 =...
In the ground state of the Hydrogen atom the energy of the electron is E0 = -13.61 eV. What is the energy of the electron in the ground state of the He+ion? _____??? What is the energy of the electron in the ground state of the Li++ ion? _____??? The electron in the He+ ion is excited to the n = 2 principal state. What is the energy of the electron now? _____??? What is the energy of the electron...
Suppose that an electron is in an excited state of a Hydrogen atom at the n...
Suppose that an electron is in an excited state of a Hydrogen atom at the n = 4 energy level. (a) How many different states are available for that electron to occupy?(b) Suppose that the electron falls directly to the ground state, causing a single photon to be released from the atom. What is the photon’s wavelength? (c) After its release, the photon collides with an electron at rest, and scatters off at a 60o angle with respect to its...
Suppose that an electron is in an excited state of a Hydrogen atom at the n...
Suppose that an electron is in an excited state of a Hydrogen atom at the n = 4 energy level. (a) How many different states are available for that electron to occupy? (b) Suppose that the electron falls directly to the ground state, causing a single photon to be released from the atom. What is the photon’s wavelength?   (c) After its release, the photon collides with an electron at rest, and scatters off at a 60o angle with respect to...
#3 Calculate the probability that the electron in the ground state of the hydrogen atom will...
#3 Calculate the probability that the electron in the ground state of the hydrogen atom will be at a radius greater than the Bohr’s radius (i.e. compute the probability P(r > a0) for n = 1 and ℓ = 0)
A hydrogen atom is in the ground state. It absorbs energy and makes a transition to...
A hydrogen atom is in the ground state. It absorbs energy and makes a transition to the n = 6 excited state. The atom returns to the ground state by emitting two photons, one in dropping to n = 5 state, and one in further dropping to the ground state. What are the photon wavelengths of (a) the first and (b) the second transitions?
(1) Part A: If a electron in a hydrogen atom makes a transition from ground state...
(1) Part A: If a electron in a hydrogen atom makes a transition from ground state to n = 8 level what wavelength of light in (nm) would be needed for the abosorbed photon to cause the transition? Part B: If the same electron falls to a lower level by emmitting a photon of light in the Paschen series what is the frequncy of light in (Hz) thats emitted? (2) When a photon have a wavelength of 195nm strikes the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT