Question

A stationary Uranium nucleus decays, ejecting an alpha particle of mass roughly one-sixtieth of the Uranium...

A stationary Uranium nucleus decays, ejecting an alpha particle of mass roughly one-sixtieth of the Uranium nucleus' mass. The alpha particle travels horizontally to the right at a speed of 8.0×106 m/s. Which of the following is the best description of the motion of the remaining roughly 59/60 fraction of the Uranium nucleus (which is now a Thorium nucleus) after the decay?

Horizontally to the right with a speed of more than 8.0×106 m/s
Horizontally to the left with a speed of more than 8.0×106 m/s
Horizontally to the right with a speed equal to 8.0×106 m/s
Horizontally to the left with a speed equal to 8.0×106 m/s
Horizontally to the right with a speed of less than 8.0×106 m/s
Horizontally to the left with a speed of less than 8.0×106 m/s

Homework Answers

Answer #1

Let M be the mass of the Uranium which is at rest initially and let M/60 is the mass of alpha particle which travels towards right with 8 x 106 m/s. As alpha particle is ejected from the uranium nucleus then the remaining mass is 59M/60.

Applying conservation of momentum,

M x 0 = M/60 x 8 x 106 + 59M/60 V, where V is the velocity of thorium nucleus.

V = - 8/59 x 106 = - 0.1356 x 106 m/s

The speed of thorium is less than 8 x 106 m/s and the negative sign indicates towards left.

Last option

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A uranium-238 nucleus at rest undergoes radioactive decay, splitting into an alpha particle (helium nucleus) with...
A uranium-238 nucleus at rest undergoes radioactive decay, splitting into an alpha particle (helium nucleus) with mass 6.64×10-27 kg and a thorium nucleus with mass 3.89×10-25 kg. The measured kinetic energy of the alpha particle is 7.11×10-13 J. 1) After the decay, the kinetic energy of the thorium nucleus was _________ the kinetic energy of the alpha particle. (less than, greater than or equal to.)
A uranium-238 nucleus at rest undergoes radioactive decay, splitting into an alpha particle (helium nucleus) with...
A uranium-238 nucleus at rest undergoes radioactive decay, splitting into an alpha particle (helium nucleus) with mass 6.64×10-27 kg and a thorium nucleus with mass 3.89×10-25 kg. The measured kinetic energy of the alpha particle is 4.01×10-13 J. If after the decay, the alpha particle is observed to move in the positive x direction. After the decay, what direction did the thorium nucleus move? Complete the following statement with less than, greater than or equal to. After the decay, the...
A uranium nucleus (mass 238 u , charge 92e ) decays, emitting an alpha particle (mass...
A uranium nucleus (mass 238 u , charge 92e ) decays, emitting an alpha particle (mass 4 u , charge 2e ) and leaving a thorium nucleus (mass 234 u , charge 90e ). At the instant the alpha particle leaves the nucleus, the centers of the two are 9.0 fm apart and essentially at rest. Find their speeds when they're a great distance apart. Treat each particle as a spherical charge distribution. Express your answers using two significant figures....
In the form of radioactive decay known as alpha decay, an unstable nucleus emits a helium-atom...
In the form of radioactive decay known as alpha decay, an unstable nucleus emits a helium-atom nucleus, which is called an alpha particle. An alpha particle contains two protons and two neutrons, thus having mass m=4u and charge q=2e. Suppose a uranium nucleus with 92 protons decays into thorium, with 90 protons, and an alpha particle. The alpha particle is initially moving at velocity= 5.89 *10^8, and the radius of alpha particle is r=3.1* 10^ -11.What is the speed of...
Uranium (U) has a mass number of 238 and an atomic number of 92 and decays...
Uranium (U) has a mass number of 238 and an atomic number of 92 and decays by emission of an alpha particle. The product of this decay is (Points : 5) A.) uranium (U), with a mass number of 234 and an atomic number of 92. B.) lead (Pb), with a mass number of 234 and an atomic number of 91. C.) thorium (Th), with a mass number of 234 and an atomic number of 90. D.) radium (Ra), with...
A 238 U nucleus is moving in the x - direction at 5.0 x 10 5...
A 238 U nucleus is moving in the x - direction at 5.0 x 10 5 m/s when it decays into an alpha particle ( 4 He) and a 234 Th nucleus. The alpha particle moves at 1.4 x 10 7 m/s at 30 ° above the x - axis. Find the velocity of the thorium. [Note: 238 U means a uranium nucleus with a mass of 238 u, where u is an atomic mass unit. The thorium nucleus has...
Beryllium-8 is an unstable isotope and decays into two α particles, which are helium nuclei with...
Beryllium-8 is an unstable isotope and decays into two α particles, which are helium nuclei with mass 6.68×10−27kg. This decay process releases 1.5×10−14J of energy. For this problem, let's assume that the mass of the Beryllium-8 nucleus is just twice the mass of an α particle and that all the energy released in the decay becomes kinetic energy of the α particles. Part A If a Beryllium-8 nucleus is at rest when it decays, what is the speed of the  α...
Beryllium-8 is an unstable isotope and decays into two α particles, which are helium nuclei with...
Beryllium-8 is an unstable isotope and decays into two α particles, which are helium nuclei with mass 6.68×10−27kg. This decay process releases 1.5×10−14J of energy. For this problem, let's assume that the mass of the Beryllium-8 nucleus is just twice the mass of an α particle and that all the energy released in the decay becomes kinetic energy of the α particles. If a Beryllium-8 nucleus is at rest when it decays, what is the speed of the α particles...
An atomic nucleus initially moving at 420 m/s emits an alpha particle in the direction of...
An atomic nucleus initially moving at 420 m/s emits an alpha particle in the direction of its velocity, and the new nucleus slows to 340 m/s. If the alpha particle has a mass of 2u and the original nucleus has a mass of 220u, what speed does the alpha particle have when it is emitted?
An unstable nucleus of mass 1.7 ✕ 10−26 kg, initially at rest at the origin of...
An unstable nucleus of mass 1.7 ✕ 10−26 kg, initially at rest at the origin of a coordinate system, disintegrates into three particles. One particle, having a mass of m1 = 2.6 ✕ 10−27 kg, moves in the positive y-direction with speed v1 = 5.4 ✕ 106 m/s. Another particle, of mass m2 = 8.0 ✕ 10−27 kg, moves in the positive x-direction with speed v2 = 3.4 ✕ 106 m/s. Find the magnitude and direction of the velocity of...