Question

Given: The viscosity is negligible. Atmo- spheric pressure is 101300 Pa. Water flows at speed of...

Given: The viscosity is negligible. Atmo- spheric pressure is 101300 Pa.

Water flows at speed of 5.8 m/s through a horizontal pipe of diameter 3.3 cm. The gauge pressure P1 of the water in the pipe is 1.9 atm. A short segment of the pipe is constricted to a smaller diameter of 2.1 cm.

What is the speed v2 of the water flowing through the constricted segment?
Answer in units of m/s.

What is the gauge pressure of the water flowing through the constricted segment? Answer in units of atm.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Given: The viscosity is negligible. Atmospheric pressure is 101300 Pa. Water flows at speed of 5.9...
Given: The viscosity is negligible. Atmospheric pressure is 101300 Pa. Water flows at speed of 5.9 m/s through a horizontal pipe of diameter 3.3 cm. The gauge pressure P1 of the water in the pipe is 1.6 atm. A short segment of the pipe is constricted to a smaller diameter of 2.4 cm. What is the gauge pressure of the water flowing through the constricted segment? Answer in units of atm.
Water at a gauge pressure of P = 3.4 atm at street level flows into an...
Water at a gauge pressure of P = 3.4 atm at street level flows into an office building at a speed of 0.86 m/s through a pipe 5.8 cm in diameter. The pipe tapers down to 2.6 cm in diameter by the top floor, 16 m above (Figure 1). Assume no branch pipes and ignore viscosity. Calculate the flow velocity in the pipe on the top floor. Calculate the gauge pressure in the pipe on the top floor.
Water at a gauge pressure of P = 3.4 atm at street level flows into an...
Water at a gauge pressure of P = 3.4 atm at street level flows into an office building at a speed of 0.64 m/s through a pipe 5.4 cm in diameter. The pipe tapers down to 2.8 cm in diameter by the top floor, 16 m above (Figure 1). Assume no branch pipes and ignore viscosity. Calculate the flow velocity in the pipe on the top floor. Calculate the gauge pressure in the pipe on the top floor.
Water at a pressure of 3.8 atm at street level flows into an office building at...
Water at a pressure of 3.8 atm at street level flows into an office building at a speed of 0.60 m/s through a pipe 5.6 cm in diameter. The pipes taper down to 2.6 cm in diameter by the top floor, 20m above (Fig. 10-49). Calculate the flow velocity and the pressure in such a pipe on the top floor. Ignore viscosity. Pressures are gauge pressures. flow velocity___ m/s pressure____ atm
Water at a gauge pressure of P = 3.2 atm at street level flows into an...
Water at a gauge pressure of P = 3.2 atm at street level flows into an office building at a speed of 0.90 m/s through a pipe 5.2 cm in diameter. The pipe tapers down to 2.6 cm in diameter by the top floor, 16 m above (Figure 1). Assume no branch pipes and ignore viscosity. Part A: Calculate the flow velocity in the pipe on the top floor. Express your answer to two significant figures and include the appropriate...
A liquid of density 1394 kg/m3 flows with speed 2.48 m/s into a pipe of diameter...
A liquid of density 1394 kg/m3 flows with speed 2.48 m/s into a pipe of diameter 0.21 m . The diameter of the pipe decreases to 0.05 m at its exit end. The exit end of the pipe is 5.43 m lower than the entrance of the pipe, and the pressure at the exit of the pipe is 1.5 atm. Applying Bernoulli’s principle, what is the pressure P1 at the entrance end of the pipe? Assume the viscosity of the...
Water flows through a horizontal pipe at a rate of 2.3 m3/s. A pressure gauge placed...
Water flows through a horizontal pipe at a rate of 2.3 m3/s. A pressure gauge placed on a 40 cm diameter section of the pipe reads 210.3 kPa. What is the gauge pressure in a section of pipe where the diameter is constricted to 35 cm and what has caused this change in pressure?
Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in...
Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in the figure below, the pressure is P1= 2.00  104 Pa, and the pipe diameter is 5.0 cm. At another point y = 0.40 m higher, the pressure is P2 = 1.25  104 Pa and the pipe diameter is 2.50 cm. A) find the speed of flow in the lower section in m/s B) find the speed of flow in the upper section in m/s C) Find...
Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in...
Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in the figure below, the pressure is P1 = 1.70 104 Pa, and the pipe diameter is 4.0 cm. At another point y = 0.30 m higher, the pressure is P2 = 1.30 104 Pa and the pipe diameter is 2.00 cm. (a) Find the speed of flow in the lower section. =m/s b) Find the speed of flow in the upper section. =m/s (c)...
Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in...
Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in the figure below, the pressure is P1 = 1.80  104 Pa, and the pipe diameter is 8.0 cm. At another point y = 0.20 m higher, the pressure is P2 = 1.15  104 Pa and the pipe diameter is 4.00 cm. (a) Find the speed of flow in the lower section. m/s (b) Find the speed of flow in the upper section. m/s (c) Find the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT