Question

A 20.0 μF capacitor initially charged to 30.0 μC is discharged through a 2.50 kΩ resistor....

A 20.0 μF capacitor initially charged to 30.0 μC is discharged through a 2.50 kΩ resistor. How long does it take to reduce the capacitor's charge to 15.0 μC ?

Express your answer with the appropriate units.

Homework Answers

Answer #1

The charge stored in a capacitor

voltage in the capacitor at initially charged

voltage in the capacitor after the discharge

The formula for the voltage across a capacitor while discharging

substituting the values in the above equation

so the capacitor took 34.56s to reduce to 15micro C

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. A capacitor charging circuit consists of a battery, an uncharged 20 μF capacitor, and a...
1. A capacitor charging circuit consists of a battery, an uncharged 20 μF capacitor, and a 4.8 kΩ resistor. At t = 0 s the switch is closed; 0.15 s later, the current is 0.62 mA . What is the battery's emf? 2. A 10 μF capacitor initially charged to 30 μC is discharged through a 1.2 kΩ resistor. How long does it take to reduce the capacitor's charge to 10 μC?
1A) A circuit consists of a 12.0 V battery, a 100 kΩ resistor, a 20.0 μF...
1A) A circuit consists of a 12.0 V battery, a 100 kΩ resistor, a 20.0 μF capacitor in series with a switch which is initially in the open position. The capacitor is initially uncharged. Calculate the charge on the capacitor 6.00 seconds after the switch is closed. Calculate the current through the resistor 6.00 seconds after the switch is closed. 1B) A 20 μF capacitor has previously charged up to contain a total charge of Q=100 μC on it. The...
A 16.0 μF capacitor is charged to a potential of 50.0 V and then discharged through...
A 16.0 μF capacitor is charged to a potential of 50.0 V and then discharged through a 225 Ω resistor. a. How long does it take the capacitor to lose half of its charge? b. How long does it take the capacitor to lose half of its stored energy?
A 2.00-nF capacitor with an initial charge of 5.32 μC is discharged through a 1.39-kΩ resistor....
A 2.00-nF capacitor with an initial charge of 5.32 μC is discharged through a 1.39-kΩ resistor. a)Calculate the magnitude of the current in the resistor 9.00 μs after the resistor is connected across the terminals of the capacitor. b)What charge remains on the capacitor after 8.00 μs? c)What is the maximum current in the resistor?
A 15.9 μF capacitor is charged to a potential of 60.0 V and then discharged through...
A 15.9 μF capacitor is charged to a potential of 60.0 V and then discharged through a 75.0 Ω resistor. (a) How long after discharge begins does it take for the capacitor to lose 90.0% of the following? (i) its initial charge s (ii) its initial energy s (b) What is the current through the resistor at both times in part (a)? (i) at tcharge A (ii) at tenergy A
A 48 μF capacitor is connected in series with a 32 kΩ resistor and a 6.0...
A 48 μF capacitor is connected in series with a 32 kΩ resistor and a 6.0 V DC source. (a) If the capacitor is initially uncharged, how long will it take the capacitor to charge to within 0.50% of maximum? (b) If the capacitor is replaced with an 96-mH inductor and the inductor has no current flowing through it initially, how long will it take the current through the inductor to be within 0.50% of maximum?
A 1.02 μF capacitor that is initially uncharged is connected in series with a 8.00 kΩ...
A 1.02 μF capacitor that is initially uncharged is connected in series with a 8.00 kΩ resistor and an emf source with 77.2 V and negligible internal resistance. The circuit is completed at t = 0. Part A Just after the circuit is completed, what is the rate at which electrical energy is being dissipated in the resistor? Express your answer with the appropriate units. Part B At what value of tt is the rate at which electrical energy is...
A 14.0 ??F capacitor is charged to a potential of 50.0 V and then discharged through...
A 14.0 ??F capacitor is charged to a potential of 50.0 V and then discharged through a 180 ?? resistor. Part A How long does it take the capacitor to lose half of its charge? Part B How long does it take the capacitor to lose half of its stored energy?
A 11.5-µF capacitor is charged to a potential of 55.0 V and then discharged through a...
A 11.5-µF capacitor is charged to a potential of 55.0 V and then discharged through a 155-Ω resistor. (a) How long does it take the capacitor to lose half of its charge?   ms (b) How long does it take the capacitor to lose half of its stored energy?   ms
A 25.0 uF capacitor is charged by a 15.0 V battery through a resistor of resistance...
A 25.0 uF capacitor is charged by a 15.0 V battery through a resistor of resistance R = 750 kΩ. How long will it take for the capacitor to reach a potential difference of 5.00 V?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT