Question

Two idential charge rod of length "l" are have charge density "ρ". Side by side (i.e....

Two idential charge rod of length "l" are have charge density "ρ". Side by side (i.e. they are placed along y-direction) one rod is placed at x=l/2 and another x=-l/2. What is a good approximation of the electric field at a far aways distance x >> l?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
6) A rod with length "l" is lied along x-axis. The charge density of the rod...
6) A rod with length "l" is lied along x-axis. The charge density of the rod is "a". Calculate the potential of the rod for a the point p on x-axis. 7) A rod with length "l" is lied along x-axis. The charge density of the rod is "a". Calculate the Electric field of the rod for a point p on x-axis.
A rod (length L, total charge +Q) with charge density lambda = a(y+b), where a and...
A rod (length L, total charge +Q) with charge density lambda = a(y+b), where a and b are constants, is positioned along the y-axis such that the upper end is at the origin. (a) Determine the electric field (magnitude and direction) at point P, on the y-axis, distance b from the upper end of the rod (b) Set up, but do not integrate, an integral that would allow you to determine the electric potential at point P. (c) Extra credit:...
A rod (length L, total charge +Q) with charge density lambda = a(y+b), where a and...
A rod (length L, total charge +Q) with charge density lambda = a(y+b), where a and b are constants, is positioned along the y-axis such that the upper end is at the origin. a. Determine the electrical field (magnitude and direction) at point P, on the y-axis, distance b from the upper end of the rod. b. Set up an integral that would allow you to determine the electrical potential at point P. c. Determine constant a in terms of...
A thin rod of length l and uniform charge per unit length λ lies along the...
A thin rod of length l and uniform charge per unit length λ lies along the x axis as shown figure. (a) Show that the electric field at point P, a distance y from the rod, along the perpendicular bisector has no x component and is given by E=(2kλsinθ0)/y. (b) Using your result to (a), show that the field of a rod of infinite length is given by E=2kλ/y.
A thin rod of length L is non-uniformly charged. The charge density is described by the...
A thin rod of length L is non-uniformly charged. The charge density is described by the expression λ=cx, where c is a constant, λ is the charge per length, and x is the coordinate such that x=0 is one end of the rod and x=L is the other. Find the total charge on the rod and the electric potential at a field point just touching the rod at the x=0 end.
A thin glass rod of length ?has a linear charge density that is constant along the...
A thin glass rod of length ?has a linear charge density that is constant along the length of the rod. a)What is the electric potential on a charge q at a distance h above the middle of the rod? b) Using the answer from part (a), find the field very far from the rod (when h>>?). c) Using the answer from part (a), find the field very close to the rod (when h<<?).
A rod of length 2l lies on the x-axis from x = −l to x =...
A rod of length 2l lies on the x-axis from x = −l to x = +l. The left half of the rod carries uniform negative charge density −λ while the right half carries a uniform positive charge density +λ. (a) What is the net charge of each half of the rod? What is the total charge of the entire rod? (b) Determine an exact expression for the magnitude of the electric field at an arbitrary point along the x-axis...
A thin insulating rod of length L has a charge Q spread uniformly along it. Point...
A thin insulating rod of length L has a charge Q spread uniformly along it. Point P is at a distance R from the middle point of the rod. What is the magnitude of the electric field, E, at point P?
A thin rod 39.2 cm long is charged uniformly with a positive charge density of 46.0...
A thin rod 39.2 cm long is charged uniformly with a positive charge density of 46.0 ?C/m. The rod is placed along the y-axis and is centered at the origin. A charge of +43.0 ?C is placed 51.2 cm from the midpoint of the rod on the positive x-axis. Calculate the electric field at a point on the x-axis, which is halfway between the point charge and the center of the rod. (Express your answer in terms of the unit...
Positive charge Q is distributed uniformly along a rod of length L that lies along the...
Positive charge Q is distributed uniformly along a rod of length L that lies along the x-axis from x=L to x=2L. How much charge is contained within a segment of the rod of length dx? Integrate to find the total electric potential at the origin (x=0) due to the rod. Express your answer in terms of the electric constant ϵ0epsilon_0 and variables Q,L