Question

An X-ray photon is scattered at an angle of θ=180.0° from an electron that is initially...

An X-ray photon is scattered at an angle of θ=180.0° from an electron that is initially at rest. After scattering, the electron has a speed of 4.67 × 10^6 m/s. Find the wavelength of the incident X-ray photon.

Homework Answers

Answer #1

Please ask your doubts or queries in the comment section below.

Please kindly upvote if you are satisfied with the solution.

Thank you.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An X-ray photon is scattered at an angle of  = 180.0° from an electron that is initially...
An X-ray photon is scattered at an angle of  = 180.0° from an electron that is initially at rest. After scattering, the electron has a speed of 4.80 × 106 m/s. Find the wavelength of the incident X-ray photon.
An incident x-ray photon is scattered from a free electron that is initially at rest. The...
An incident x-ray photon is scattered from a free electron that is initially at rest. The photon is scattered straight back at an angle of 180? from its initial direction. The wavelength of the scattered photon is 8.80×10?2 nm . (A) What is the wavelength of the incident photon? (B) What is the magnitude of the momentum of the electron after the collision?
In a Compton scattering experiment, an x-ray photon scatters through an angle of 19.8° from a...
In a Compton scattering experiment, an x-ray photon scatters through an angle of 19.8° from a free electron that is initially at rest. The electron recoils with a speed of 2,600 km/s. (a) Calculate the wavelength of the incident photon. nm (b) Calculate the angle through which the electron scatters. °
In a Compton scattering experiment, an x-ray photon scatters through an angle of 13.4° from a...
In a Compton scattering experiment, an x-ray photon scatters through an angle of 13.4° from a free electron that is initially at rest. The electron recoils with a speed of 1,560 km/s. (a) Calculate the wavelength of the incident photon. In nm (b) Calculate the angle through which the electron scatters.
In a Compton scattering experiment, an x-ray photon scatters through an angle of 18.2° from a...
In a Compton scattering experiment, an x-ray photon scatters through an angle of 18.2° from a free electron that is initially at rest. The electron recoils with a speed of 1,800 km/s. (a) Calculate the wavelength of the incident photon. (nm) (b) Calculate the angle through which the electron scatters. (degrees)
An X-Ray photon with an energy of E = 128 keV undergoes Compton Scattering at an...
An X-Ray photon with an energy of E = 128 keV undergoes Compton Scattering at an angle of θ = 33°. What is the wavelength (λ0) of the incident photon (in nm)? Use h = 4.136 x 10-15 eVs and c = 3 x 108 m/s. What is the wavelength (λ') of the scattered photon (in nm)? What is the energy (E’) if the scattered photon (in keV)? Use h = 4.136 x 10-15 eVs and c = 3 x...
A 110 keV X-ray photon coherently scatters off one of the valence electrons of a nitrogen...
A 110 keV X-ray photon coherently scatters off one of the valence electrons of a nitrogen atom. Assume that the scattering angle of the photon is θ = 15°. (Use 511 keV for the energy of an electron at rest, 1.602 ✕ 10−19 C for the charge of the electron, and 2.998 ✕ 108 m/s for the speed of light in vacuum.) a) Calculate the energy of the scattered photon (in keV). b) Calculate the velocity of the ejected electron...
A photon with wavelength 0.1365 nm scatters from an electron that is initially at rest. What...
A photon with wavelength 0.1365 nm scatters from an electron that is initially at rest. What must be the angle between the direction of propagation of the incident and scattered photons if the speed of the electron immediately after the collision is 8.10×106 m/s ? ϕ = ____ (units)
Consider the process of Compton scattering. A photon of wavelength λ is scattered off a free...
Consider the process of Compton scattering. A photon of wavelength λ is scattered off a free electron initially at rest. Let λ’ be the wavelength of the photon scattered in a direction θ relative to the photon incident direction. (a) Find λ’ in terms of λ and θ and universal constants. (b) Find the kinetic energy of the recoiled electron.
A photon of wavelength 5.58 pm scatters at an angle of 122° from an initially stationary,...
A photon of wavelength 5.58 pm scatters at an angle of 122° from an initially stationary, unbound electron. What is the de Broglie wavelength(in pm) of the electron after the photon has been scattered?? Notice: Answer is not (9.29, 2.12, 2.06, nor 4.11)pm Explanation: The de Broglie wavelength of a massive particle is related to its momentum in the same way that a photon's momentum is related to its wavelength. The well-known Compton scattering relationship gives the final wavelength of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT