Question

A 20 turn loop is immersed in a magnetic field that’s spatially uniform and varies in strength. Initially, the plane of the loop is perpendicular to the magnetic field. At t= 0 s, the loop starts to rotate so that 1.00 s later, the plane of the loop is parallel to the magnetic field, thus rotating so that it completes one rotation in 4.00 s. The magnetic field strength varies according to ?=1.20?^(−?1.90)T. The loop’s radius is 12.0 cm. What is the average induced emf in the loop between t= 0 s and t= 0.80s ?

Answer #1

The answer is given below. Please upvote (Thumbs up).

A 149-turn circular coil of radius 2.67 cm is immersed in a
uniform magnetic field that is perpendicular to the plane of the
coil. During 0.153 s the magnetic field strength increases from
51.1 mT to 99.3 mT. Find the magnitude of the average EMF, in
millivolts, that is induced in the coil during this time
interval.

A 133 turn circular coil of radius 2.77 cm is immersed in a
uniform magnetic field that is perpendicular to the plane of the
coil. Over an interval of 0.121 s, the magnetic field strength
increases from 55.7 mT to 95.9 mT. Find the magnitude of the
average emf avgEavg induced in the coil during this time interval,
in millivolts.
avg=Eavg= ?

Consider a conducting rod of length 2.50 m immersed in a uniform
magnetic field with strength 4.00 T and oriented as shown in the
figure. Assume that this rod is part of a closed conducting loop
and is free to move. If this rod moves with speed 4.00 m/s in the
+? − direction, what is the magnitude of the induced emf?

A circular wire loop of radius rr = 16 cmcm is immersed in a
uniform magnetic field BB = 0.375 TT with its plane normal to the
direction of the field.
If the field magnitude then decreases at a constant rate of
−1.2×10−2 T/sT/s , at what rate should rr increase so
that the induced emf within the loop is zero?

A square loop of wire is held in a uniform 0.35 T magnetic field
directed perpendicular to the plane of the loop. The length of each
side of the square is decreasing at a constant rate of 4.0 cm/s.
What emf is induced in the loop when the length is 9.2 cm?

A circular loop in the plane of the paper lies in a 0.75 T
magnetic field pointing into the paper. The loop’s diameter is
changed from 20.0 cm to 6.0 cm in 0.50 s.
Determine the direction of the induced current and justify your
answer.
Determine the magnitude of the average induced emf.
If the coil resistance is 2.5 Ω, what is the average induced
current?

A 20-turn coil with a diameter of 6.00 cm is placed in a
constant, uniform magnetic field of 1.00 T directed perpendicular
to the plane of the coil. Beginning at time t = 0 s, the field is
increased at a uniform rate until it reaches 1.30 T at t = 10.0 s.
The field remains constant thereafter.
1) What is the magnitude of the induced emf in the coil at t
< 0 s?
2) What is the magnitude...

6: A single-turn circular loop of wire rests flat on this page.
A magnetic field is directed perpendicular to this page pointing
outwards (towards you). When the magnetic field strength increases
from 3.2 T to 6.5 T in 0.026 seconds, a 1 V emf is induced in the
coil.
a) Calculate the radius of the loop.
b) State the direction of the induced current and briefly
explain how you arrived at your answer.

A flat,106 turn current‑carrying loop is immersed in a uniform
magnetic field. The area of the loop is 5.95×10−4 m2, and the angle
between its magnetic dipole moment and the field is 43.1∘. Find the
strength of the magnetic field that causes a torque of 1.53×10−5
N⋅m to act on the loop when a current of 0.00395 A flows in it.

A flat, 118‑turn, current‑carrying loop is immersed in a uniform
magnetic field. The area of the loop is 8.09 cm2 and the angle
between its magnetic dipole moment and the field is 50.9∘. Find the
strength of the magnetic field that causes a torque of 2.39×10−5
N⋅m to act on the loop when a current of 3.81 mA flows in it.

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 6 minutes ago

asked 19 minutes ago

asked 33 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago