Question

Saturated liquid ethanol at 500 kPa enters a heat exchanger and is brought to 950oK at...

Saturated liquid ethanol at 500 kPa enters a heat exchanger and is brought to 950oK at constant pressure, after which it enters a reversible adiabatic turbine where it expands to 100 kPa. Find the heat transfer in the heat exchanger, the turbine exit temperature, and turbine work.

Homework Answers

Answer #1

Temperature before entering heat exchanger not given.

The final temperature is T2 and work done is W.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
. An adiabatic heat exchanger receives 3 kg/s of R12 as a saturated vapor at 960...
. An adiabatic heat exchanger receives 3 kg/s of R12 as a saturated vapor at 960 kPa and condenses it to a saturated liquid at this pressure.   The cooling water at 100 kPa enters the heat exchanger at 20 C and leaves at 35 C.   Determine the heat transfer to the water in kW and the water flowrate in kg/s.   385.6 kW    6.09 kg/s
An adiabatic counterflow heat exchanger receives 0.3 m3/s of saturated steam vapor at 200 kPa and...
An adiabatic counterflow heat exchanger receives 0.3 m3/s of saturated steam vapor at 200 kPa and condenses it to a saturated liquid on the shell side.   Water enters the tubes at 25 C and leaves at 40 C.   Determine the second law efficiency for the heat exchanger.
Water is used to cool R-134a in the condenser of a heat exchanger. The refrigerant enters...
Water is used to cool R-134a in the condenser of a heat exchanger. The refrigerant enters the counter-flow heat exchanger at 800 kPa, 80 0C and a mass flow rate of 2 kg/s. The refrigerant exits as a saturated liquid. Cooling water enters the condenser at 500 kPa and 18 0C and leaves the condenser at 30 0C. Determine the necessary mass flow rate of water. Each fluid is assumed to flow at constant pressure.
Question 1 Steam enters a nozzle at 300 kPa and 700ºC with a velocity of 20...
Question 1 Steam enters a nozzle at 300 kPa and 700ºC with a velocity of 20 m/s. The nozzle exit pressure is 200 kPa. Assuming this process is reversible and adiabatic, determine (a) the exit temperature and (b) the exit velocity.
A heat exchanger uses saturated steam at 375 K to heat cold water entering at 280...
A heat exchanger uses saturated steam at 375 K to heat cold water entering at 280 K and leaving at 301 K only the latent heat of vaporization is removed from the steam. i.e. the steam is condensed and saturated water exit the exchanger. a) what is the LMTD for a counter current heat exchanger? b) what is the LMTD for a parallel or cocurrent heat exchanger? c) if the counter current heat exchanger has a duty (Q) of 81000...
Water, initially (state 1) a saturated liquid at 1100C, is contained in a piston-cylinder assembly. The...
Water, initially (state 1) a saturated liquid at 1100C, is contained in a piston-cylinder assembly. The water undergoes a process to the corresponding saturated vapor (state 2), during which the piston moves freely in the cylinder. If the change of state is brought about by heating the water as it undergoes an internally reversible process at constant pressure and temperature, determine (a) heat transfer using first law of thermodynamics in kJ/kg and (b) heat transfer using second law of thermodynamics...
A 0.6-m3 rigid tank is filled with saturated liquid water at 170 °C. A valve at...
A 0.6-m3 rigid tank is filled with saturated liquid water at 170 °C. A valve at the bottom of the tank is now opened, and one-half of the total mass is withdrawn from the tank in liquid form. Heat is transferred to water from a source of 210 °C so that the temperature in the tank remains constant. Determine (a) the amount of heat transfer and (b) the reversible work and exergy destruction for this process. Assume the surroundings to...
Steam with pressure 6 MPA and temperature 500 ⁰C expands in an adiabatic turbine to saturated...
Steam with pressure 6 MPA and temperature 500 ⁰C expands in an adiabatic turbine to saturated steam and a pressure of 0,3 MPA. Kinetic energy and potential energy is neglected. Determine work produced, entropi generated and exergy destroyed for the turbine. Assume surrounding to 0,1 MPa och 25 ⁰C.
A power plant uses an adiabatic single-flash process coupled with a liquid-vapor separator and a turbine....
A power plant uses an adiabatic single-flash process coupled with a liquid-vapor separator and a turbine. (1) Flash Chamber (2) Seperator (3) Steam Turbine. Saturated liquid water enters the flash chamber (which behaves like a throttling valve) at 230 degrees C at a rate of 44 kg/s and leaves at a pressure of 700 kPa. The stream then enters the separator where the liquid is collected at the bottom of the unit while the vapor portion of the stream continues...
Air at 100 kPa and 10°C enters a compressor and is brought to 1000 kPa and...
Air at 100 kPa and 10°C enters a compressor and is brought to 1000 kPa and 50°C. The constant pressure heat capacity of air is 1.01 kJ/kg K. If 15 kg/min of air are to be compressed, determine the power require- ment of the compressor. State your assumptions. (12.625 kW)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT