Question

Two air-filled, parallel-plate capacitors are to be connected to a 10 V battery, first individually, then...

Two air-filled, parallel-plate capacitors are to be connected to a 10 V battery, first individually, then in series, and then in parallel. In those arrangements, the energy stored in the capacitors turns out to be, listed least to greatest: 225 μJ, 300 μJ, 900 μJ, and 1200 μJ. Of the two capacitors, what is the (a) smaller and (b) greater capacitance?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two parallel-plate capacitors C1 and C2 are connected in series to a battery. Both capacitors have...
Two parallel-plate capacitors C1 and C2 are connected in series to a battery. Both capacitors have the same plate area of 3.40 cm2 and plate separation of 2.65 mm. However, the first capacitor C1 is filled with air, while the second capacitor C2 is filled with a dielectric that has a dielectric constant of 3.40. The total charge on the series arrangement is 13.8 pC. (a) What is the battery voltage? V (b) What is the potential difference across each...
When two capacitors are connected in parallel and connected to a battery, the total energy stored...
When two capacitors are connected in parallel and connected to a battery, the total energy stored is 5 times greater than when they are in series and connected to the same battery. What is the ratio of the two capacitances?
Please provide all steps When two capacitors are connected in parallel and connected to a battery,...
Please provide all steps When two capacitors are connected in parallel and connected to a battery, the total energy stored is 5 times greater than when they are in series and connected to the same battery. What is the ratio of the two capacitances?
Two air-filled parallel-plate capacitors (C1 and C2) are placed in series. Both capacitors have the same...
Two air-filled parallel-plate capacitors (C1 and C2) are placed in series. Both capacitors have the same plate area, but the distance between the plates of C1 is twice the distance between the plates of C2. If C1 is equal to 10 μF (microfarads), calculate the equivalent capacitance Ceq of the two capacitors. Quote your answer in μF (microfarads) rounded to one decimal place.
An air-filled capacitor (with a capacitance C) consisting two parallel plates separated by a distance d...
An air-filled capacitor (with a capacitance C) consisting two parallel plates separated by a distance d is connected to a battery of voltage V has stored a charge Q. While it is still connected to the battery, the plate separation is adjusted to 2d. In terms of C, V and Q, find the new value of capacitance, voltage, charge and energy stored on the capacitor. Explain your answer. [5 marks]
9 equal capacitors are connected purely in parallel to a 8 volt battery. The same capacitors...
9 equal capacitors are connected purely in parallel to a 8 volt battery. The same capacitors are then connected to the same battery purely in series. The total stored energy in the parallel configuration is 626 micro-joules greater than the series configuration. What is the value of each capacitor in micro-farads?
Two capacitors, C1=5900pF and C2=2600pF, are connected in series to a 15.0 V battery. The capacitors...
Two capacitors, C1=5900pF and C2=2600pF, are connected in series to a 15.0 V battery. The capacitors are later disconnected from the battery and connected directly to each other, positive plate to positive plate, and negative plate to negative plate. What then will be the charge on each capacitor?
An air-filled parallel-plate capacitor of capacitance 12 nF has a 9 V battery connected across it....
An air-filled parallel-plate capacitor of capacitance 12 nF has a 9 V battery connected across it. a) If the battery is first disconnected and then a dielectric of K = 3 is inserted between the plates, what is the new capacitance, new charge, and new potential difference on the capacitor? b) How much work is required to remove the dielectric in part a? 2) A nickel wire of length 10 m and radius 2 mm has a potential difference of...
Now let’s look at a specific problem involving series and parallel combinations of capacitors. Two capacitors,...
Now let’s look at a specific problem involving series and parallel combinations of capacitors. Two capacitors, one with C1=6.0μF and the other with C2=3.0μF, are connected to a potential difference of Vab=18V. Find the equivalent capacitance, and find the charge and potential difference for each capacitor when the two capacitors are connected (a) in series and (b) in parallel. PART A: Repeat this example for  Vab=18V and C1=C2=10μF. What is the equivalent capacitance for the capacitors when they are connected in...
A 3800-pF air-filled capacitor is connected to a 16-V battery. If you now insert a ceramic...
A 3800-pF air-filled capacitor is connected to a 16-V battery. If you now insert a ceramic dielectric material (k = 5.8) that fills the space between the plates, how much charge will flow from the battery? __________ C A parallel-plate capacitor has a plate separation of 1.00 mm. If the material between the plates is air, what plate area is required to provide a capacitance of 3.00 pF? __________ m^2
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT