Question

A very long cylinder of radius ? carries volume current that is spatially uniform but slowly...

A very long cylinder of radius ? carries volume current that is spatially uniform but slowly time varying: ? = ?0?̂ Where ?0 is constant in space but not in time a) What does the pattern of the current tell you about the associated magnetic field? b) Use Ampere’s law to find the magnetic field (you must show the Amperian loop(s) used) c) What does the pattern of the magnetic field tell you about the induced electric field? d) Use Faraday’s law to find the induced electric field (you must show the Amperian loop(s) used)

Homework Answers

Answer #1

PLEASE RATE IT UP!!! THANKS!!

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A long, straight solid cylinder of radius R2 carries a current. Although the current density (i.e.,...
A long, straight solid cylinder of radius R2 carries a current. Although the current density (i.e., the current per unit cross sectional area) is symmetrical about the axis of the cylinder, it is not constant; the current density is J0 for r < R1, and 2J0 for R1 < r < R2. (The direction of the current is the same everywhere within the cylinder.) Find an expression for the magnetic field (a) for r < R1, (b) for R1 <...
An infinitesimal thin current sheet in whole x-y Plane, carries a constant uniform current density with...
An infinitesimal thin current sheet in whole x-y Plane, carries a constant uniform current density with α as magnitude per unit length to current direction a) State Ampere´s law. b) use symmetry to make a suitable ansatz for magnetic induction. Think about direction and dependencies of the variables. |B_0|= (μ_0 α)/2 show B for z>0 and z<0. c) Now we have an ext. magnetic field B_ext, one side of the sheet cancels out, other side gets |B_tot|. What is the...
This problem set will look at why the magnetic balls rolled slowly down the metal surfaces...This...
This problem set will look at why the magnetic balls rolled slowly down the metal surfaces...This scenario is slightly different, but makes the math easier! A square loop is cut out of a thick sheet of aluminum. It is then placed so that the top half is in a uniform magnetic field B (say 1T), and allowed to fall under gravity. (The first part of this problem requires you to set up dimensions.)   If the magnetic field is B, what...
One long wire carries current 14.0 A to the left along the x axis. A second...
One long wire carries current 14.0 A to the left along the x axis. A second long wire carries current 70.0 A to the right along the line (y = 0.280 m, z = 0). (a) Where in the plane of the two wires is the total magnetic field equal to zero? (b) A particle with a charge of ?2.00 µC is moving with a velocity of 150î Mm/s along the line (y = 0.100 m, z = 0). Calculate...
3.Explain why if a CD power supply is used, only when the power supply is turned...
3.Explain why if a CD power supply is used, only when the power supply is turned on or of there is an induced current in the second coil (secondary). 4. Explain why when the switch is on, and there is a direct current through the circuit, there is no induced electric current in that coil. Electromagnetic Induction I. Objectives 1.   Verify the Faraday-Lenz‘s Law 2. Perform measurements with a set of coils to understand how a transformer works. II. Theory In...
A loop of wire sits in a uniform magnetic field, everywhere pointing toward you. Due to...
A loop of wire sits in a uniform magnetic field, everywhere pointing toward you. Due to a changing magnetic flux through the loop, an induced current flows in the wire, clockwise as shown. The area of the loop is J. 1.63 m2 , and the magnetic field initially has magnitude K. 0.61 T. (a) Suppose that, over a time period of L. 1.47 s, the magnetic field changes from its initial value, producing an average induced voltage of M. 8.7...
The plane surface at y=0 (the x-z plane) has a uniform surface current in the z...
The plane surface at y=0 (the x-z plane) has a uniform surface current in the z (k) direction. Think of a thin sheet of water flowing in the z direction along some a surface at y=0. Answer the following T/F questions. Use ideas of symmetry and recall that the magnetic field at a point is perpendicular to the current causing it and perpendicular to the line from the current element causing the field to the point where it is evaluated....
Consider a long cylinder of magnetic material with radius R. The magnetization of the material is...
Consider a long cylinder of magnetic material with radius R. The magnetization of the material is given by mos2 where s is the radial distance and is aligned with the cylinders long axis (i.e. z hat direction), where mo is a constant.  Determine the bound currents used to describe this magnetization. Show the total bound current is zero. Use the currents to find the magnetic field inside and outside the magnetic material. Plot |B| as a function of s.
An infinitely long solid cylindrical cable (radius R, centered on the z-axis) carries a volume current...
An infinitely long solid cylindrical cable (radius R, centered on the z-axis) carries a volume current ?⃗ = (??^5) ?̂, The cable is surrounded by a concentric, infinitely long solenoid (radius 3R, n turns /m) carrying a current ?0. a. Find expressions for the magnetic field in all regions of space. b. Graph the field as a function of position along the x-axis. c. Find the force on a segment of wire from (x = 4R, y = 0, z...
An infinitely long solid cylindrical cable (radius R, centered on the z-axis) carries a volume current...
An infinitely long solid cylindrical cable (radius R, centered on the z-axis) carries a volume current ?⃗ = (??^5) ?̂, The cable is surrounded by a concentric, infinitely long solenoid (radius 3R, n turns /m) carrying a current ?0. a. Find expressions for the magnetic field in all regions of space. b. Graph the field as a function of position along the x-axis. c. Find the force on a segment of wire from (x = 4R, y = 0, z...