Question

A gas undergoes a process in a piston–cylinder assembly during which the pressure-specific volume relation is...

A gas undergoes a process in a piston–cylinder assembly during which the pressure-specific volume relation is pv1.2 = constant. The mass of the gas is 0.4 lb and the following data are known: p1 = 160 lbf/in.2, V1 = 1 ft3, and p2 = 300 lbf/in.2 During the process, heat transfer from the gas is 2.1 Btu. Kinetic and potential energy effects are negligible. Determine the change in specific internal energy of the gas, in Btu/lb.

Δu⁢=

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Steam, initially at 700 lbf/in.2, 550°F undergoes a polytropic process in a piston–cylinder assembly to a...
Steam, initially at 700 lbf/in.2, 550°F undergoes a polytropic process in a piston–cylinder assembly to a final pressure of 2200 lbf/in.2 Kinetic and potential energy effects are negligible. Determine the heat transfer, in Btu per lb of steam, for a polytropic exponent of 1.4, (a) using data from the steam tables. (b) assuming ideal gas behavior.
A gas contained in a vertical piston–cylinder assembly by a piston with a face area of...
A gas contained in a vertical piston–cylinder assembly by a piston with a face area of 40 in2 and weight of 100 lbf. The atmosphere exerts a pressure of 14.7 lbf/in2 on top of the piston. A paddle wheel transfers 3 Btu of energy to the gas during a process in which the elevation of the piston increases slowly by 4 ft. The piston and cylinder are poor thermal conductors, and friction between the piston and cylinder can be neglected....
Water undergoes a constant‐volume process within a piston–cylinder assembly from saturated liquid at 4 bar to...
Water undergoes a constant‐volume process within a piston–cylinder assembly from saturated liquid at 4 bar to a final pressure of 50 bar. Kinetic and potential energy effects are negligible. Determine the work and the heat transfer, each in kJ per kg of water. [7 points]
A piston-cylinder assembly containing 3 kg of an ideal gas undergoes a constant pressure process from...
A piston-cylinder assembly containing 3 kg of an ideal gas undergoes a constant pressure process from an initial volume of 48 m3 to a final volume of 30 m3 . During the process, the piston supplies 1.2 MJ of work to the gas. The gas has a constant specific heat at constant volume of 1.80 kJ/(kg∙K) and a specific gas constant of 1.48 kJ/(kg∙K). Neglect potential and kinetic energy changes. a. Determine the initial specific volume of the gas in...
A mass of one kg of water within a piston–cylinder assembly undergoes a constant-pressure process from...
A mass of one kg of water within a piston–cylinder assembly undergoes a constant-pressure process from saturated vapor at 500 kPa to a temperature of 260°C. Kinetic and potential energy effects are negligible. For the water: a) Evaluate the work, in kJ, b) If the work is 30 kJ, evaluate the heat transfer, in kJ, c) If the heat transfer is negligible, evaluate the entropy production in kJ/K d) Determine if the process is reversible, irreversible, or impossible.
Ammonia contained in a piston–cylinder assembly, initially saturated vapor at T1 = 4°F, undergoes an isothermal...
Ammonia contained in a piston–cylinder assembly, initially saturated vapor at T1 = 4°F, undergoes an isothermal process to a final specific volume v2 = 5.2 ft3/lb. Determine the final pressure, in lbf/in2, and the final quality, x2.
Carbon dioxide (CO2) is compressed in a piston–cylinder assembly from p1 = 0.7 bar, T1 =...
Carbon dioxide (CO2) is compressed in a piston–cylinder assembly from p1 = 0.7 bar, T1 = 280 K to p2 = 14 bar. The initial volume is 0.2 m3. The process is described by pV1.25 = constant. Assuming ideal gas behavior and neglecting kinetic and potential energy effects, determine the work and heat transfer for the process, each in kJ, using constant specific heats evaluated at 300 K, and data from Table A-23.
Oxygen gas is contained in a piston cylinder assembly at an initial pressure of 1000 kPa...
Oxygen gas is contained in a piston cylinder assembly at an initial pressure of 1000 kPa and expands from 0.2 m3 to 1.0 m3 by a process where PV = constant. The gas has an internal energy change of -200 kJ. Calculate the work (kJ) and the heat transfer (kJ) done during the process.
1- A certain amount of O2, as an ideal gas, is contained in a cylinder-piston system...
1- A certain amount of O2, as an ideal gas, is contained in a cylinder-piston system and develops a process from T1 = 300 K, P1 = 200 kPa to T2 = 1500 K and P2 = 150 kPa. Determine the specific entropy change in kJ / (kg K). 2- A certain amount of H2O in a closed rigid cylinder is cooled from T1 = 800 ° F and P1 = 100 lbf / in2 to P2 = 20 lbf...
Carbon dioxide (CO2) gas in a piston-cylinder assembly undergoes three processes in series that begin and...
Carbon dioxide (CO2) gas in a piston-cylinder assembly undergoes three processes in series that begin and end at the same state (a cycle). Process 1–2: Expansion from state 1 where p1 = 10 bar, V1 = 1 m3, to state 2 where V2 = 4 m3. During the process, pressure and volume are related by pV1.5 = constant. Process 2–3: Constant volume heating to state 3 where p3 = 10 bar. Process 3–1: Constant pressure compression to state 1. Sketch...