Question

An L-R-C series circuit L= 0.125 H , R = 245 ΩΩ , and C= 7.32...

An L-R-C series circuit L= 0.125 H , R = 245 ΩΩ , and C= 7.32 μFμF carries an rms current of 0.452 AA with a frequency of 396 Hz.

a) What average power is delivered by the source?

b) What is the average rate at which electrical energy is converted to thermal energy in the resistor?

c) What is the average rate at which electrical energy is dissipated (converted to other forms) in the capacitor?

d) What is the average rate at which electrical energy is dissipated (converted to other forms) in the inductor?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An L-R-C series circuit LLL = 0.122 HH , RRR = 244 ΩΩ , and CCC...
An L-R-C series circuit LLL = 0.122 HH , RRR = 244 ΩΩ , and CCC = 7.25 μFμF carries an rms current of 0.445 AA with a frequency of 397 HzHz . What average power is delivered by the source? What is the average rate at which electrical energy is converted to thermal energy in the resistor? What is the average rate at which electrical energy is dissipated (converted to other forms) in the capacitor? What is the average...
An L-R-C series circuit L = 0.123 H , R = 242 Ω , and C...
An L-R-C series circuit L = 0.123 H , R = 242 Ω , and C = 7.32 μF carries an rms current of 0.445 A with a frequency of 401 Hz . a. What is the phase angle? b. What is the power factor for this circuit? c. What is the impedance of the circuit? d. What is the rms voltage of the source? e) What is the average rate at which electrical energy is converted to thermal energy...
An L-R-C series circuit L = 0.121 H , R = 240 Ω , and C...
An L-R-C series circuit L = 0.121 H , R = 240 Ω , and C = 7.31 μF carries an rms current of 0.452 A with a frequency of 400 Hz . A. What is the phase angle B. What is the power factor for this circuit. C. What is the impedence of the circuit D. What is the RMS voltage of the source. E) What is the average rate at which electrical energy is converted to thermal energy...
A series R–L–C circuit of R = 225 ? , L = 0.900 H and C...
A series R–L–C circuit of R = 225 ? , L = 0.900 H and C = 1.75 ?F carries an rms current of 0.230 A with a frequency of 100 Hz . What is the average rate at which electrical energy is converted to heat in the resistor? Express your answer in watts to three significant figures. What average power is delivered by the source? Express your answer in watts to three significant figures. What is the average rate...
An L-R-C series circuit L = 0.117 H , R = 243? , and C =...
An L-R-C series circuit L = 0.117 H , R = 243? , and C = 7.27?F  carries an rms current of 0.454A  with a frequency of 408Hz . a) What is the phase angle? (in radians) b) What is the power factor for this circuit? c) What is the impedance of the circuit? (in Ω) d) What is the rms voltage of the source? (in V) e) What is the average rate at which electrical energy is converted to thermal energy...
Question 1: An L-R-C series circuit L = 0.117 H , R = 243 Ω ,...
Question 1: An L-R-C series circuit L = 0.117 H , R = 243 Ω , and C = 7.27 μF carries an rms current of 0.448 A with a frequency of 402 Hz . What is the phase angle, answer in (radians) What is the power factor of this circuit? What is the impedance of the circuit? What is the rms voltage of the source? What is the average rate at which electrical energy is converted to thermal energy...
An L-R-C series circuit LLL = 0.122 HH , RRR = 244 ΩΩ , and CCC...
An L-R-C series circuit LLL = 0.122 HH , RRR = 244 ΩΩ , and CCC = 7.25 μFμF carries an rms current of 0.445 AA with a frequency of 397 HzHz . What is the power factor for this circuit? What is the impedance of the circuit? What is the rms voltage of the source?
Consider a series RLC circuit with R = 24 Ω, L = 6.0 mH, and C...
Consider a series RLC circuit with R = 24 Ω, L = 6.0 mH, and C = 32 μF. The circuit is connected to a 10-V (rms), 600-Hz AC source. (a) Is the sum of the voltage drops across R, L, and C equal to 10 V (rms)? (b) Which is greatest, the power delivered to the resistor, to the capacitor, or to the inductor? (c) Find the average power delivered to the circuit.  W
In a series oscillating RLC circuit, R = 16.4 Ω, C = 30.9 μF, L =...
In a series oscillating RLC circuit, R = 16.4 Ω, C = 30.9 μF, L = 9.74 mH, and E = Emsinωdt with Em = 45.2 V and ωd = 2940 rad/s. For time t = 0.431 ms find (a) the rate Pg at which energy is being supplied by the generator, (b) the rate PC at which the energy in the capacitor is changing, (c) the rate PL at which the energy in the inductor is changing, and (d)...
In a series oscillating RLC circuit, R = 15.5 Ω, C = 31.6 μF, L =...
In a series oscillating RLC circuit, R = 15.5 Ω, C = 31.6 μF, L = 9.32 mH, and E = Emsinωdt with Em = 44.6 V and ωd = 3070 rad/s. For time t = 0.432 ms find (a) the rate Pg at which energy is being supplied by the generator, (b) the rate PC at which the energy in the capacitor is changing, (c) the rate PL at which the energy in the inductor is changing, and (d)...