Question

a 10 g bullet is fired into a 2 kg block initially at rest at the...

a 10 g bullet is fired into a 2 kg block initially at rest at the edge of a frictionless table of height 1.00 m. the bullet remains in the block, and after impact the block lands 2.00 m from the bottom of the table. determine the initial speed of the bullet

Homework Answers

Answer #1

hope you got. Rate my work please

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A bullet of mass m = 8.00 g is fired into a block of mass M...
A bullet of mass m = 8.00 g is fired into a block of mass M = 250 g that is initially at rest at the edge of a table of height h = 1.00 m. The bullet remains in the block, and after the impact the block lands d = 2.00 m from the bottom of the table. Determine the initial speed of the bullet.
A bullet of mass m = 8.00 g is fired into a block of mass M...
A bullet of mass m = 8.00 g is fired into a block of mass M = 180 g that is initially at rest at the edge of a table of height h = 1.00 m (see figure below). The bullet remains in the block, and after the impact the block lands d =  2.10 m from the bottom of the table. Determine the initial speed of the bullet. m/s
bullet of mass m=14 gr is fired into a block of mass M=2 kg initially at...
bullet of mass m=14 gr is fired into a block of mass M=2 kg initially at rest at the edge of a frictionless table of height h=1.10 m. The bullet remains in the block and the block lands a distance d=0.66 m from the bottom of the table. a)Determine the initial velocity of the bullet. vi=  m/s b) Determine the loss of kinetic Energy during the collision. ΔK =  J
A 12.0-g bullet is fired horizontally into a 116-g wooden block that is initially at rest...
A 12.0-g bullet is fired horizontally into a 116-g wooden block that is initially at rest on a frictionless horizontal surface and connected to a spring having spring constant 151 N/m. The bullet becomes embedded in the block. If the bullet-block system compresses the spring by a maximum of 81.0 cm, what was the speed of the bullet at impact with the block?
A 10 g bullet is fired with 450 m/s into a 10 kg block that sits...
A 10 g bullet is fired with 450 m/s into a 10 kg block that sits at rest on a wooden table 20 cm from the edge of the table. The bullet gets embedded in the block (perfectly inelastic collision). The block, with the embedded bullet, then slides to the edge of the table and drops down with some initial velocity while leaving the edge of the table. The coefficient of kinetic friction between the block and the surface of...
A 5.00-g bullet moving with an initial speed of v0 = 410 m/s is fired into...
A 5.00-g bullet moving with an initial speed of v0 = 410 m/s is fired into and passes through a 1.00-kg block, as in the figure below. The block, initially at rest on a frictionless horizontal surface, is connected to a spring with a spring constant of 940 N/m. (a) If the block moves 5.00 cm to the right after impact, find the speed at which the bullet emerges from the block. (b) If the block moves 5.00 cm to...
A 10 g bullet is fired into a 9.0 kg wood block that is at rest...
A 10 g bullet is fired into a 9.0 kg wood block that is at rest on a wood table. The block, with the bullet embedded, slides 5.0 cm across the table. The coefficient of kinetic friction for wood sliding on wood is 0.20. What was the speed of the bullet?
A 12.0g bullet is fired horizontally into a 650g block that is initially at rest on...
A 12.0g bullet is fired horizontally into a 650g block that is initially at rest on a frictionless horizontal surface. The initial velocity of the bullet is 450m/s. After the bullet is embedded into the block, the bullet-block system slides along the frictionless surface into a spring having spring constant k=470N/m a. What is the speed of the block after the bullet once it’s stuck in the block b. What was the work done on the bullet during the collision...
A bullet of mass 12.4 g is fired into an initially stationary block and comes to...
A bullet of mass 12.4 g is fired into an initially stationary block and comes to rest in the block. The block, of mass 1.15 kg, is subject to no horizontal external forces during the collision with the bullet. After the collision, the block is observed to move at a speed of 4.00 m
A 2.8 kg block of wood sits on a frictionless table. A 3.0 g bullet, fired...
A 2.8 kg block of wood sits on a frictionless table. A 3.0 g bullet, fired horizontally at a speed of 400 m/s , goes completely through the block, emerging at a speed of 220 m/s . What is the speed of the block immediately after the bullet exits?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT