Question

The separation between two charged metallic plates is 15cm. The electric field between the plates is...

The separation between two charged metallic plates is 15cm. The electric field between the plates is uniform and has an intensity of 3000N/C. An electron is released at rest at a point P precisely over the surface of the negative plate.

A) In how much time will it reach the other plate?

B) What is its velocity before reaching the plate?

Thank you in advance!

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A uniform electric field exists in a region between two oppositely charged plates. An electron is...
A uniform electric field exists in a region between two oppositely charged plates. An electron is released from rest at the surface of the negatively charged plate and strikes the surface of the opposite plate, 5.0 cm away, in a time 1.9 ✕ 10−8 s. (a) What is the speed of the electron as it strikes the second plate? (b) What is the magnitude of the electric field ?
The surfaces of two large parallel conducting plates separated by 5.0 cm have uniform surface charge...
The surfaces of two large parallel conducting plates separated by 5.0 cm have uniform surface charge densities that are equal in magnitude but opposite in sign. The difference in potential between the plates is 200 V. (a) Is the positive or the negative plate at the higher potential? (b) What is the magnitude of the electric field between the plates? (c) An electron is released from rest next to the negatively charged surface. Find the work done by the electric...
A uniform electric field of magnitude 624 N/C exists between two parallel plates that are 3.98...
A uniform electric field of magnitude 624 N/C exists between two parallel plates that are 3.98 cm apart. A proton is released from rest at the positive plate at the same instant an electron is released from rest at the negative plate. (a) Determine the distance from the positive plate at which the two pass each other. Ignore the electrical attraction between the proton and electron. m (b) Repeat part (a) for a sodium ion (Na+) and a chloride ion...
An electric field of 120 N/C is maintained between two plates separated by 10.0 cm. A...
An electric field of 120 N/C is maintained between two plates separated by 10.0 cm. A positive charged particle of mass 1.92 x 10-20 kg is placed at the positive plate and released. If its speed at the negative plate is 21,000 m/s, find: a)the work done on the charge. b)the potential difference between the plates c) the charge on the particle. Show all the steps and state the answer as clear as possible please. Thank you.
A pair of charged conducting plates produces a uniform field of Eo = 10,838 N/C directed...
A pair of charged conducting plates produces a uniform field of Eo = 10,838 N/C directed to the right, between the plates. The separation of the plates is L = 42mm. In Figure, an electron (e = - 1.6 x 10-19 C; m = 9.1 x 10-31 kg) is projected from plate A, directly toward plate B, with an initial velocity of vo = 2
A pair of charged conducting plates produces a uniform field of 19800 N/C, directed to the...
A pair of charged conducting plates produces a uniform field of 19800 N/C, directed to the right, between the plates. The separation of the plates is 320 mm. An electron is projected from plate A, directly toward plate B, with an initial speed of v0 = 8.7 x 107m/s. What is the speed of the electron as it strikes plate B? (include units with answer)
7.8 In an electron microscope, there is an electron gun that contains two charged metallic plates...
7.8 In an electron microscope, there is an electron gun that contains two charged metallic plates 2.75 cm apart. An electric force accelerates each electron in the beam from rest to 7.70% of the speed of light over this distance. (Ignore the effects of relativity in your calculations.) (a) Determine the kinetic energy of the electron as it leaves the electron gun. Electrons carry this energy to a phosphorescent viewing screen where the microscope's image is formed, making it glow....
A charged particle is fired into a region between two charged plates and is seen to...
A charged particle is fired into a region between two charged plates and is seen to follow the trajectory shown by the dashed line due to the electric force. The top plate is positively charged and the bottom plate is negatively charged. Ignore edge effects throughout the problem. Take the value of electron charge as 1.6 × 10-19 C and the value of dielectric constant as 8.854 × 10-12 C2/N·m2? If the charge density on the surface of the plates...
An electric field of 120 N/C is maintained between two plates separated by 10.0 cm. A...
An electric field of 120 N/C is maintained between two plates separated by 10.0 cm. A positive charged particle of mass 1.92 x 10-20 kg is placed at the positive plate and released. If its speed at the negative plate is 21,000 m/s: A) find the work done on the charge. B) find the potential difference between the plates C) find the charge on the particle
Two very large charged parallel metal plates are 8.50 cm apart and produce a uniform electric...
Two very large charged parallel metal plates are 8.50 cm apart and produce a uniform electric field of 3.05×106 N/C between them. A proton is fired perpendicular to these plates, starting at the middle of the negative plate and going toward the positive plate. How much work has the electric field done on this proton by the time it reaches the positive plate? Answer in Joules.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT