Question

A particle of 1kg moving with 11m/s in the positive x-axis direction makes a head-on elastic...

A particle of 1kg moving with 11m/s in the positive x-axis direction makes a head-on elastic collision with a stationary particle of mass 3kg. After collision, the two particles rebound along the x-axis. What is the final velocity of the lighter object?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 1-kg particle moving with 14 m/sm/s   in the positive x-axis direction makes a head-on elastic...
A 1-kg particle moving with 14 m/sm/s   in the positive x-axis direction makes a head-on elastic collision with a stationary 3-kg particle. After collision, the two particles rebound along the x-axis. What is the final velocity of the 1-kg particle?
A particle of mass m moving at 5.0 m/s in the positive x direction makes a...
A particle of mass m moving at 5.0 m/s in the positive x direction makes a glancing elastic collision with a particle of mass 2m that is at rest before the collision. After the collision, m moves off at an angle of 45
-A 11.0g object moving to the right at 18.6 cm/s makes an elastic head-on collision with...
-A 11.0g object moving to the right at 18.6 cm/s makes an elastic head-on collision with a 17.9g object moving in the opposite direction at 29.2 cm/s. What is the velocity of the 11.0g object after the collision (assume positive to the right)? - What is the velocity of the 17.9g object after the collision?
Two identical particles moving along the positive x-axis, the first with velocity 2v0 and the second...
Two identical particles moving along the positive x-axis, the first with velocity 2v0 and the second with velocity v0 respectively. They collide in an elastic head on collision. After the collision, the velocities of the two particles are respectively
A 2.0 g particle moving at 7.2 m/s makes a perfectly elastic head-on collision with a...
A 2.0 g particle moving at 7.2 m/s makes a perfectly elastic head-on collision with a resting 1.0 g object. (a) Find the speed of each after the collision. 2.0 g particle m/s 1.0 g particle m/s (b) Find the speed of each particle after the collision if the stationary particle has a mass of 10 g. 2.0 g particle m/s 1.0 g particle m/s (c) Find the final kinetic energy of the incident 2.0 g particle in the situations...
A 2.0 g particle moving at 5.6 m/s makes a perfectly elastic head-on collision with a...
A 2.0 g particle moving at 5.6 m/s makes a perfectly elastic head-on collision with a resting 1.0 g object. (a) Find the speed of each after the collision. 2.0 g particle m/s 1.0 g particle m/s (b) Find the speed of each particle after the collision if the stationary particle has a mass of 10 g. 2.0 g particle m/s 1.0 g particle m/s (c) Find the final kinetic energy of the incident 2.0 g particle in the situations...
A 2.0-g particle moving at 7.0 m/s makes a perfectly elastic head-on collision with a resting...
A 2.0-g particle moving at 7.0 m/s makes a perfectly elastic head-on collision with a resting 1.0-g object. (a) Find the speed of each particle after the collision. 2.0 g particle     m/s 1.0 g particle     m/s (b) Find the speed of each particle after the collision if the stationary particle has a mass of 10 g. 2.0 g particle     m/s 10.0 g particle     m/s (c) Find the final kinetic energy of the incident 2.0-g particle in the situations described in...
A 2.0-g particle moving at 7.2 m/s makes a perfectly elastic head-on collision with a resting...
A 2.0-g particle moving at 7.2 m/s makes a perfectly elastic head-on collision with a resting 1.0-g object. (a) Find the speed of each particle after the collision. 2.0 g particle     m/s 1.0 g particle     m/s (b) Find the speed of each particle after the collision if the stationary particle has a mass of 10 g. 2.0 g particle     m/s 10.0 g particle     m/s (c) Find the final kinetic energy of the incident 2.0-g particle in the situations described in...
A 10.0 g object moving to the right at 17.0 cm/s makes an elastic head-on collision...
A 10.0 g object moving to the right at 17.0 cm/s makes an elastic head-on collision with a 15.0 g object moving in the opposite direction at 35.0 cm/s. Find the velocity of each object after the collision. 10g object 15g object
A 1.0kg object initially moving with a velocity of 3.0m/s to the right makes an elastic...
A 1.0kg object initially moving with a velocity of 3.0m/s to the right makes an elastic head-on collision with a 1.5kg object initially moving to the left at 2.0m/s. a) What are the final velocities of the two objects after the collision? b) Using the given initial data for the two-object system as well as your results, show that the total kinetic energy is conserved for this elastic collision.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT