Question

Determine the observed values (if they exist) for linear momentum and position of a quantum particle...

Determine the observed values (if they exist) for linear momentum and position of a quantum particle free to travel in the x direction. Explain your answer using the Hiesenberg uncertainty principle.

Homework Answers

Answer #1

thumbs up please

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The energy, E, of a quantum particle confined in a ”quantum dot” depends on the linear...
The energy, E, of a quantum particle confined in a ”quantum dot” depends on the linear size of the dot, L, in the following way: E = α mL2 In this equation, the size L is expressed in nanometers (nm), the energy E is expressed in electron-volts (eV), the constant α is given by α = 0.1 ± 0.005 eV-nm2 , and m is a dimensionless parameter representing the mass of the quantum particle. A series of spectroscopic measurements are...
Intro to Quantum Mechanics (Free particle) a). Write the relations between the wave vector and angular...
Intro to Quantum Mechanics (Free particle) a). Write the relations between the wave vector and angular frequency of a free particle and its momentum vector and energy. b) What is the general form in one dimension of the wave function for a free particle of mass m and momentum p? c) Can this wave function ever be entirely real? If so, show how this is possible. If not, explain why not. d) What can you say about the integral of...
1. In one inertial reference frame, an electron is observed traveling with a velocity of magnitude...
1. In one inertial reference frame, an electron is observed traveling with a velocity of magnitude v in the positive x-direction, where v is 0.6c. What are the momentum and total energy of the electron in that inertial reference frame in terms of v and the rest mass of the electron? What are the speed, momentum and energy of that electron as measured in a reference frame that is traveling at a velocity of magnitude v/2 in the positive x-direction?...
Part C The quantum state of a particle can be specified by giving a complete set...
Part C The quantum state of a particle can be specified by giving a complete set of quantum numbers (n,l, ml,ms). How many different quantum states are possible if the principal quantum number is n = 4? To find the total number of allowed states, first write down the allowed orbital quantum numbers l, and then write down the number of allowed values of ml for each orbital quantum number. Sum these quantities, and then multiply by 2 to account...
In class, we are discussing a free particle trapped inside the box. Keeping this discussion in...
In class, we are discussing a free particle trapped inside the box. Keeping this discussion in mind, please answer the following questions. (a) Calculate the probability of finding the particle in the first one third of the box (0 to a/3). The particle is residing in the first excited state. (b) Show that the ground state wavefunction is orthogonal to the first excited state wavefunction. (c) Uncertainty is defined as the square root of variance ( a 2 = -...
The position of a particle moving along the x axis depends on the time according to...
The position of a particle moving along the x axis depends on the time according to the equation x = ct2 − bt3, where x is in meters and t in seconds. For the following, let the numerical values of c and b be 5.1 and 1.5, respectively. (For vector quantities, indicate direction with the sign of your answer.) (c) At what time does the particle reach its maximum positive x position? From t = 0.0 s to t =...
2-Verify the given linear approximation at a = 0. Then determine the values of x for...
2-Verify the given linear approximation at a = 0. Then determine the values of x for which the linear approximation is accurate to within 0.1. (Enter your answer using interval notation. Round your answers to three decimal places.) 1 (1 + 4x)4 ≈ 1 − 16x
Question 3 Part B:How many values of ml are possible for an electron with orbital quantum...
Question 3 Part B:How many values of ml are possible for an electron with orbital quantum number l = 1? Express your answer as an integer. Part C The quantum state of a particle can be specified by giving a complete set of quantum numbers (n,l, ml,ms). How many different quantum states are possible if the principal quantum number is n = 2? To find the total number of allowed states, first write down the allowed orbital quantum numbers l,...
Part C The quantum state of a particle can be specified by giving a complete set...
Part C The quantum state of a particle can be specified by giving a complete set of quantum numbers (n,l, ml,ms). How many different quantum states are possible if the principal quantum number is n = 2? To find the total number of allowed states, first write down the allowed orbital quantum numbers l, and then write down the number of allowed values of ml for each orbital quantum number. Sum these quantities, and then multiply by 2 to account...
3. (10 pts) Heisenberg Uncertainty Principle The uncertainty principle places a limit on specifying the location...
3. (10 pts) Heisenberg Uncertainty Principle The uncertainty principle places a limit on specifying the location and momentum of a particle simultaneously. Δ?Δ? ≥ ℏ/2 This is a consequence of the wave nature of particles, which we can see by examining the uncertainty in the single-slit diffraction of light. (a) In single-slit diffraction, the width of the slit ? represents the uncertainty in x position of the beam, ∆?: ∆? = ? We can imagine that we can try to...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT