Question

The mass of a meteor with a radius of 1 km is about 9 x 1012...

The mass of a meteor with a radius of 1 km is about 9 x 1012 kg. The mass of a meteor also is proportional to the cube of its radius. Suppose a meteor with a radius of 8.1 km is moving at 2 x 104m/s when it collides inelastically with the Earth. The Earth has a mass of 5.97 x 1024 kg and assume the Earth is stationary. The kinetic energy lost by the asteroid in this collision will be transferred to non-conservative work in heating the atmosphere and physically destroying the place where it lands. The Tsar Bomb, the largest atomic bomb ever tested, released 2.1 x 1017 J of energy. (Which, by the way, is 1000's of times more energy compared to the atomic bombs dropped in World War II.) How many MILLIONS of equivalent Tsar Bombs is the kinetic energy lost of this meteor?

Homework Answers

Answer #1

The density of the meteor is the same.

=> M2 = 4.7829 x 1015 kg

this is the mass of the 8.1 km meteor

use momentum conservation for Earth-meteor collision,

M2v + 0 = (M2+M')V

=> V = 1.6 x 10-5 m/s

the kinetic energy at impact for this meteor is:

and final kinetic energy is: U' = (1/2)(M2+M')V2 = 7.664 x 1014 J

so, energy lost by the meteor is: U - U' = 9.565899 x 1023 J

Energy released by Tsar bomb = 2.1 x 1017 J

so, it would require 9.565899 x 1023 / 2.1 x 1017 = 4.555 Millions of equivalent Tsar bombs.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The mass of a meteor with a radius of 1 km is about 9 x 1012...
The mass of a meteor with a radius of 1 km is about 9 x 1012 kg. The mass of a meteor also is proportional to the cube of its radius. Suppose a meteor with a radius of 8.5 km is moving at 2.0 x 104 m/s when it collides inelastically with the Earth. The Earth has a mass of 5.97 x 1024 kg and assume the Earth is stationary. The kinetic energy lost by the asteroid in this collision...
The mass of a meteor with a radius of 1 km is about 9 x 1012...
The mass of a meteor with a radius of 1 km is about 9 x 1012 kg. The mass of a meteor also is proportional to the cube of its radius. Suppose a meteor with a radius of 11.4 km is moving at 1.8 x 104 m/s when it collides inelastically with the Earth. The Earth has a mass of 5.97 x 1024 kg and assume the Earth is stationary. The kinetic energy lost by the asteroid in this collision...
he mass of a meteor with a radius of 1 km is about 9 x 1012...
he mass of a meteor with a radius of 1 km is about 9 x 1012 kg. The mass of a meteor also is proportional to the cube of its radius. Suppose a meteor with a radius of 8.2 km is moving at 1.9 x 104 m/s when it collides inelastically with the Earth. The Earth has a mass of 5.97 x 1024 kg and assume the Earth is stationary. The kinetic energy lost by the asteroid in this collision...
2.) The mass of a meteor with a radius of 1 km is about 9 x...
2.) The mass of a meteor with a radius of 1 km is about 9 x 1012 kg. The mass of a meteor also is proportional to the cube of its radius. Suppose a meteor with a radius of 10.7 km is moving at 1.7 x 104 m/s when it collides inelastically with the Earth. The Earth has a mass of 5.97 x 1024 kg and assume the Earth is stationary. The kinetic energy lost by the asteroid in this...
The mass of a meteor with a radius of 1 km is about 9 x 10^12...
The mass of a meteor with a radius of 1 km is about 9 x 10^12 kg. The mass of a meteor also is proportional to the cube of its radius. Suppose a meteor with a radius of 11.6 km is moving at 1.6 x 10^4 m/s when it collides inelastically with the Earth. The Earth has a mass of 5.97 x 10^24kg and assume the Earth is stationary. The kinetic energy lost by the asteroid in this collision will...
The Little Prince lives on an asteroid with a radius of 10 km made up of...
The Little Prince lives on an asteroid with a radius of 10 km made up of volcanic rock (density 2,500 kg/m3). His mass is 30 kg. a) What is his weight on the asteroid? On Earth he can jump to a height of 1 m. With that knowledge, he jumps up on the asteroid as hard as he can. b) Will he be able to escape the asteroid? The mass of the Earth is 6 x 1024 kg. The radius...
The Little Prince lives on an asteroid with a radius of 10 km made up of...
The Little Prince lives on an asteroid with a radius of 10 km made up of volcanic rock (density 2,500 kg/m3). His mass is 30 kg. a) What is his weight on the asteroid? On Earth he can jump to a height of 1 m. With that knowledge, he jumps up on the asteroid as hard as he can. b) Will he be able to escape the asteroid? The mass of the Earth is 6 x 1024 kg. The radius...
Space X recently launched Starlink satellites in an orbit of radius 6850 km. How fast will...
Space X recently launched Starlink satellites in an orbit of radius 6850 km. How fast will the satellites be moving in the orbit? Express your answer in m/s. Mass of the earth = 5.97 x 10^24 kg 1 km = 1,000 m.
The Hubble Space Telescope orbits the Earth at an altitude of about 350 miles (570 km)....
The Hubble Space Telescope orbits the Earth at an altitude of about 350 miles (570 km). The Earth has a radius of about 3950 miles (6350 km). The gravitational constant is G = 6.674 x 10-11 m3/kg/s2. The telescope has a mass of 11,110 kg. The Earth has a mass of 5.97 x 1024 kg. (Hint: Convert all distances to meters first.) a) What is the force of gravity on the telescope? b) How fast is the telescope orbiting around...
A spacecraft lands on a new planet of mass 2.5 x 1024 kg and radius 5100...
A spacecraft lands on a new planet of mass 2.5 x 1024 kg and radius 5100 km. If an object is dropped 3.22 meters above the surface of the planet how long will it take reach the surface?