Question

a monochromatic beam of light is absorbed by a collection of ground state hydrogen atoms in...

a monochromatic beam of light is absorbed by a collection of ground state hydrogen atoms in such a way that 6 different wavelengths are observed when the hydrogen relaxes back to the ground state. (a) what is the wavelength of the incident beam? explain your steps. (b) what is the longest wavelength in the emission spectrum of these atoms? (c) to what portion of the electromagnetic spectrum and (d) to what series does it belong? (e) what is the shortest wavelength? (f) to what portion of the electromagnetic spectrum and (g) to what series does it belong?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An electron in a hydrogen atom relaxes to the ground state while emitting a 93.8 nm...
An electron in a hydrogen atom relaxes to the ground state while emitting a 93.8 nm photon. a. Is this light visible? In what region of the electromagnetic spectrum does it lie? b. What was the initial principal quantum number, ni, of the electron undergoing the transition?
When we observe the light emitted by a collection of atoms of a gas by passing...
When we observe the light emitted by a collection of atoms of a gas by passing it though a prism (spectroscope), we can separate out photons of different wavelengths to view the spectrum of a gas. A continuous spectrum of light of all wavelengths resembles a rainbow. What would the emission spectrum of gas of atoms with quantized energy levels look like?
If a hydrogen atom is excited from an n=1 state to an n=4 state, how much...
If a hydrogen atom is excited from an n=1 state to an n=4 state, how much energy does this correspond to? Is this an absorption or an emission? What is the wavelength of the photon involved in this process? To what region of the electromagnetic spectrum does this correspond?
Physical Chemistry: Ch 11 Quantum Mechanics: Model Systems and the Hydrogen Atom (a)A hydrogen atom bonded...
Physical Chemistry: Ch 11 Quantum Mechanics: Model Systems and the Hydrogen Atom (a)A hydrogen atom bonded to a surface is acting as a harmonic oscillator with a classical frequency of 6.000 × 1013 s −1 . What is the energy difference in J between quantizedenergy levels? (b) Calculate the wavelength of light that must be absorbed in order for the hydrogen atom to go from one level to another. (c) To what region of the electromagnetic spectrum does such a...
A large number of ground state electrons in a gas of hydrogen atoms are excited to...
A large number of ground state electrons in a gas of hydrogen atoms are excited to the fourth excited state. a. How many energy did each electron gain? b. How many visible photos would be emitted by these electrons as they return to the ground state? c. What is the wavelength (in nm) of the least energetic visible photon?
a ground state hydrogen atom absorbs a photon of light having a wavelength of 93.73 nm....
a ground state hydrogen atom absorbs a photon of light having a wavelength of 93.73 nm. it then gives off a photon having a wavelength of 410.1 nm. what is the final state of the hydrogen atom?
A ground state hydrogen atom absorbs a photon of light having a wavelength of 92.57 nm....
A ground state hydrogen atom absorbs a photon of light having a wavelength of 92.57 nm. It then gives off a photon having a wavelength of 954.3 nm. What is the final state of the hydrogen atom? Values for physical constants can be found here.
A ground state hydrogen atom absorbs a photon light having a wavelength of 92.57 nm. It...
A ground state hydrogen atom absorbs a photon light having a wavelength of 92.57 nm. It then gives off a photon having a wavelength of 1944 nm. What is the final state of the hydrogen atom? I got Nf=1.14 and it wasn't right
A ground state hydrogen atom absorbs a photon of light having a wavelength of 92.27 nm....
A ground state hydrogen atom absorbs a photon of light having a wavelength of 92.27 nm. It then gives off a photon having a wavelength of 383.4 nm. What is the final state of the hydrogen atom? Values for physical constants can be found here. nf= please try to show solution
The electron in a hydrogen atom falls from an excited energy level to the ground state...
The electron in a hydrogen atom falls from an excited energy level to the ground state in two steps, causing the emission of photons with wavelengths of 656.5 nm and 121.6 nm (So the in the first step the 656.5 nm photon is emitted and in the second step the 121.6 nm photon is emitted). What is the principal quantum number (ni) of the initial excited energy level from which the electron falls?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT